703 research outputs found

    INCREASING YOUR IMPACT VIA LEADERSHIP DEVELOPMENT

    Get PDF
    Labor and Human Capital,

    Mass-Radius Relations and Core-Envelope Decompositions of Super-Earths and Sub-Neptunes

    Full text link
    Many exoplanets have been discovered with radii of 1-4 Earth radii, between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are "sub-Neptunes" likely to have significant hydrogen-helium envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, hydrogen-helium envelope masses, and associated envelope entropies. For planets in the super-Earth/sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both "Earth-like" rock-iron cores and pure ice cores, and find that the necessary gaseous envelope masses for this important sub-class of exoplanets must range very widely from zero to many Earth masses, even for a given core mass. This result bears importantly on exoplanet formation and envelope evaporation processes.Comment: 26 pages, 21 figures, 16 tables, accepted to Ap

    Foam replica method in the manufacturing of bioactive glass scaffolds: Out-of-date technology or still underexploited potential?

    Get PDF
    Since 2006, the foam replica method has been commonly recognized as a valuable technology for the production of highly porous bioactive glass scaffolds showing three-dimensional, open-cell structures closely mimicking that of natural trabecular bone. Despite this, there are important drawbacks making the usage of foam-replicated glass scaffolds a difficult achievement in clinical practice; among these, certainly the high operator-dependency of the overall manufacturing process is one of the most crucial, limiting the scalability to industrial production and, thus, the spread of foam-replicated synthetic bone substitutes for effective use in routine management of bone defect. The present review opens a window on the versatile world of the foam replica tech-nique, focusing the dissertation on scaffold properties analyzed in relation to various processing parameters, in order to better understand which are the real issues behind the bottleneck that still puts this technology on the Olympus of the most used techniques in laboratory practice, without moving, unfortunately, to a more concrete application. Specifically, scaffold morphology, mechanical and mass transport properties will be reviewed in detail, considering the various templates proposed till now by several research groups all over the world. In the end, a comprehensive overview of in vivo studies on bioactive glass foams will be provided, in order to put an emphasis on scaffold performances in a complex three-dimensional environment

    Agronomy Notes, no. 1

    Get PDF
    This is the first issue of Agronomy Notes. The Agronomy Department, University of Kentucky, expects to use this publication to inform county agents, other agricultural workers, and leaders on current progress in soils & crops work. The Kentucky Experiment Station will be an important source of information. Information may be drawn from other research. Field trials and observations that show useful information may be reported. The emphasis will be on short timely topics

    Chemical Evolution of the Galactic Bulge as Derived from High-Resolution Infrared Spectroscopy of K and M Red Giants

    Get PDF
    We present chemical abundances in K and M red-giant members of the Galactic bulge derived from high-resolution infrared spectra obtained with the Phoenix spectrograph on Gemini-South. The elements studied are carbon, nitrogen, oxygen, sodium, titanium, and iron. The evolution of C and N abundances in the studied red-giants show that their oxygen abundances represent the original values with which the stars were born. Oxygen is a superior element for probing the timescale of bulge chemical enrichment via [O/Fe] versus [Fe/H]. The [O/Fe]-[Fe/H] relation in the bulge does not follow the disk relation, with [O/Fe] values falling above those of the disk. Titanium also behaves similarly to oxygen with respect to iron. Based on these elevated values of [O/Fe] and [Ti/Fe] extending to large Fe abundances, it is suggested that the bulge underwent a more rapid chemical enrichment than the halo. In addition, there are declines in both [O/Fe] and [Ti/Fe] in those bulge targets with the largest Fe abundances, signifying another source affecting chemical evolution: perhaps Supernovae of Type Ia. Sodium abundances increase dramatically in the bulge with increasing metallicity, possibly reflecting the metallicity dependant yields from supernovae of Type II, although Na contamination from H-burning in intermediate mass stars cannot be ruled out.Comment: ApJ in pres

    Particle dynamics of a cartoon dune

    Get PDF
    The spatio-temporal evolution of a downsized model for a desert dune is observed experimentally in a narrow water flow channel. A particle tracking method reveals that the migration speed of the model dune is one order of magnitude smaller than that of individual grains. In particular, the erosion rate consists of comparable contributions from creeping (low energy) and saltating (high energy) particles. The saltation flow rate is slightly larger, whereas the number of saltating particles is one order of magnitude lower than that of the creeping ones. The velocity field of the saltating particles is comparable to the velocity field of the driving fluid. It can be observed that the spatial profile of the shear stress reaches its maximum value upstream of the crest, while its minimum lies at the downstream foot of the dune. The particle tracking method reveals that the deposition of entrained particles occurs primarily in the region between these two extrema of the shear stress. Moreover, it is demonstrated that the initial triangular heap evolves to a steady state with constant mass, shape, velocity, and packing fraction after one turnover time has elapsed. Within that time the mean distance between particles initially in contact reaches a value of approximately one quarter of the dune basis length

    Competitive surface colonization of antibacterial and bioactive materials doped with strontium and/or silver ions

    Get PDF
    Nowadays, there is a large amount of research aimed at improving the multifunctional behavior of the biomaterials for bone contact, including the concomitant ability to induce apatite formation (bioactivity), fast and effective osteoblasts colonization, and antibacterial activity. The aim of this study is to develop antibacterial and bioactive surfaces (Ti6Al4V alloy and a silica-based bioactive glass) by chemical doping with strontium and/or silver ions. The surfaces were characterized by Scanning Electron Microscopy equipped with Energy Dispersive X ray Spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), and Transmission Electron Microscopy (TEM). To better focus on the cells–bacteria competition for the implant surface, in addition to the standard assays for the evaluation of the bacteria adhesion (ISO22196) and for single-cell cultures or biofilm formation, an innovative set of co-cultures of cells and bacteria is here proposed to simulate a competitive surface colonization. The results suggest that all the bioactive tested materials were cytocompatible toward the bone progenitor cells representative for the self-healing process, and that the doped ones were effective in reducing the surface colonization from a pathogenic drug-resistant strain of Staphylococcus aureus. The co-cultures experiments demonstrated that the doped surfaces were able to protect the adhered osteoblasts from the bacteria colonization as well as prevent the infection prior to the surface colonization by the osteoblasts

    Indirect predictive control techniques for a matrix converter operating at fixed switching frequency

    Get PDF
    The following paper presents a novel indirect model predictive control strategy for a direct matrix converter (DMC). The direct matrix converter has a large number of available switching states and therefore the implementation of predictive control techniques require high computational resources. In addition, the simultaneous selection of weighting factors for the control of input and output variables of the converter complicates the system tuning. In this paper, two indirect model predictive control strategies are proposed in order to reduce the computational cost and by doing so avoid the use of weighting factors. The proposal is enhanced with a fixed switching frequency strategy in order to improve the performance of the full system. Results confirm the feasibility of the proposal by demonstrating that it is an alternative to classical predictive control strategies for the direct matrix converter.CONACYT – Consejo Nacional de Ciencia y Tecnologí

    The Observed Trend of Boron and Oxygen in Field Stars of the Disk

    Get PDF
    Oxygen abundances are derived in a sample of 13 field F and G dwarfs and subgiants with metallicities in the range of -0.75 < [Fe/H] < +0.15. This is the same sample of stars for which boron abundances have been derived earlier from archived spectra obtained with the Hubble Space Telescope. In a log-log comparison of the B versus the O abundances, a slope of m(BO)=1.39 is found, indicating that in the disk, the abundance of B relative to O is intermediate between primary and secondary production (hybrid behavior). This relation of B versus O for disk stars is compared to the same relation for halo stars.Comment: 14 pages, 3 figures, 1 table. In press to The Astronomical Journal (July 2001
    • …
    corecore