243 research outputs found

    On the Neutrality of Flowshop Scheduling Fitness Landscapes

    Get PDF
    Solving efficiently complex problems using metaheuristics, and in particular local searches, requires incorporating knowledge about the problem to solve. In this paper, the permutation flowshop problem is studied. It is well known that in such problems, several solutions may have the same fitness value. As this neutrality property is an important one, it should be taken into account during the design of optimization methods. Then in the context of the permutation flowshop, a deep landscape analysis focused on the neutrality property is driven and propositions on the way to use this neutrality to guide efficiently the search are given.Comment: Learning and Intelligent OptimizatioN Conference (LION 5), Rome : Italy (2011

    On the Impact of Multiobjective Scalarizing Functions

    Get PDF
    Recently, there has been a renewed interest in decomposition-based approaches for evolutionary multiobjective optimization. However, the impact of the choice of the underlying scalarizing function(s) is still far from being well understood. In this paper, we investigate the behavior of different scalarizing functions and their parameters. We thereby abstract firstly from any specific algorithm and only consider the difficulty of the single scalarized problems in terms of the search ability of a (1+lambda)-EA on biobjective NK-landscapes. Secondly, combining the outcomes of independent single-objective runs allows for more general statements on set-based performance measures. Finally, we investigate the correlation between the opening angle of the scalarizing function's underlying contour lines and the position of the final solution in the objective space. Our analysis is of fundamental nature and sheds more light on the key characteristics of multiobjective scalarizing functions.Comment: appears in Parallel Problem Solving from Nature - PPSN XIII, Ljubljana : Slovenia (2014

    Local Optimal Sets and Bounded Archiving on Multi-objective NK-Landscapes with Correlated Objectives

    Get PDF
    The properties of local optimal solutions in multi-objective combinatorial optimization problems are crucial for the effectiveness of local search algorithms, particularly when these algorithms are based on Pareto dominance. Such local search algorithms typically return a set of mutually nondominated Pareto local optimal (PLO) solutions, that is, a PLO-set. This paper investigates two aspects of PLO-sets by means of experiments with Pareto local search (PLS). First, we examine the impact of several problem characteristics on the properties of PLO-sets for multi-objective NK-landscapes with correlated objectives. In particular, we report that either increasing the number of objectives or decreasing the correlation between objectives leads to an exponential increment on the size of PLO-sets, whereas the variable correlation has only a minor effect. Second, we study the running time and the quality reached when using bounding archiving methods to limit the size of the archive handled by PLS, and thus, the maximum size of the PLO-set found. We argue that there is a clear relationship between the running time of PLS and the difficulty of a problem instance.Comment: appears in Parallel Problem Solving from Nature - PPSN XIII, Ljubljana : Slovenia (2014

    Local Optimal Sets and Bounded Archiving on Multi-objective NK-Landscapes with Correlated Objectives

    Get PDF
    The properties of local optimal solutions in multi-objective combinatorial optimization problems are crucial for the effectiveness of local search algorithms, particularly when these algorithms are based on Pareto dominance. Such local search algorithms typically return a set of mutually nondominated Pareto local optimal (PLO) solutions, that is, a PLO-set. This paper investigates two aspects of PLO-sets by means of experiments with Pareto local search (PLS). First, we examine the impact of several problem characteristics on the properties of PLO-sets for multi-objective NK-landscapes with correlated objectives. In particular, we report that either increasing the number of objectives or decreasing the correlation between objectives leads to an exponential increment on the size of PLO-sets, whereas the variable correlation has only a minor effect. Second, we study the running time and the quality reached when using bounding archiving methods to limit the size of the archive handled by PLS, and thus, the maximum size of the PLO-set found. We argue that there is a clear relationship between the running time of PLS and the difficulty of a problem instance.Comment: appears in Parallel Problem Solving from Nature - PPSN XIII, Ljubljana : Slovenia (2014

    Force-based Cooperative Search Directions in Evolutionary Multi-objective Optimization

    Get PDF
    International audienceIn order to approximate the set of Pareto optimal solutions, several evolutionary multi-objective optimization (EMO) algorithms transfer the multi-objective problem into several independent single-objective ones by means of scalarizing functions. The choice of the scalarizing functions' underlying search directions, however, is typically problem-dependent and therefore difficult if no information about the problem characteristics are known before the search process. The goal of this paper is to present new ideas of how these search directions can be computed \emph{adaptively} during the search process in a \emph{cooperative} manner. Based on the idea of Newton's law of universal gravitation, solutions attract and repel each other \emph{in the objective space}. Several force-based EMO algorithms are proposed and compared experimentally on general bi-objective ρ\rhoMNK landscapes with different objective correlations. It turns out that the new approach is easy to implement, fast, and competitive with respect to a (μ+λ)(\mu+\lambda)-SMS-EMOA variant, in particular if the objectives show strong positive or negative correlations

    Pareto Local Optima of Multiobjective NK-Landscapes with Correlated Objectives

    Get PDF
    International audienceIn this paper, we conduct a fitness landscape analysis for multiobjective combinatorial optimization, based on the local optima of multiobjective NK-landscapes with objective correlation. In single-objective optimization, it has become clear that local optima have a strong impact on the performance of metaheuristics. Here, we propose an extension to the multiobjective case, based on the Pareto dominance. We study the co-influence of the problem dimension, the degree of non-linearity, the number of objectives and the correlation degree between objective functions on the number of Pareto local optima

    Analysis of objectives relationships in multiobjective problems using trade-off region maps

    Get PDF
    Understanding the relationships between objectives in many-objective optimisation problems is desirable in order to develop more effective algorithms. We propose a techniquefor the analysis and visualisation of complex relationships between many (three or more) objectives. This technique looks at conflicting, harmonious and independent objectives relationships from different perspectives. To do that, it uses correlation, trade-off regions maps and scatter-plots in a four step approach. We apply the proposed technique to a set of instances of the well-known multiobjective multidimensional knapsack problem. The experimental results show that with the proposed technique we can identify local and complex relationships between objectives, trade-offs not derived from pairwise relationships, gaps in the fitness landscape, and regions of interest. Such information can be used to tailor the development of algorithms

    Clarifying the Difference in Local Optima Network Sampling Algorithms

    Get PDF
    We conduct the first ever statistical comparison between two Local Optima Network (LON) sampling algorithms. These methodologies attempt to capture the connectivity in the local optima space of a fitness landscape. One sampling algorithm is based on a random-walk snowballing procedure, while the other is centred around multiple traced runs of an Iterated Local Search. Both of these are proposed for the Quadratic Assignment Problem (QAP), making this the focus of our study. It is important to note the sampling algorithm frameworks could easily be modified for other domains. In our study descriptive statistics for the obtained search space samples are contrasted and commented on. The LON features are also used in linear mixed models and random forest regression for predicting heuristic optimisation performance of two prominent heuristics for the QAP on the underlying combinatorial problems. The model results are then used to make deductions about the sampling algorithms’ utility. We also propose a specific set of LON metrics for use in future predictive models alongside previously-proposed network metrics, demonstrating the payoff in doing so

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)

    Tunnelling Crossover Networks for the Asymmetric TSP

    Get PDF
    Local optima networks are a compact representation of fitness landscapes that can be used for analysis and visualisation. This paper provides the first analysis of the Asymmetric Travelling Salesman Problem using local optima networks. These are generated by sampling the search space by recording the progress of an existing evolutionary algorithm based on the Generalised Asymmetric Partition Crossover. They are compared to networks sampled through the Chained Lin-Kernighan heuristic across 25 instances. Structural differences and similarities are identified, as well as examples where crossover smooths the landscape
    corecore