4,046 research outputs found
Magnon Bose condensation in symmetry breaking magnetic field
Magnon Bose condensation (BC)in the symmetry breaking magnetic field is a
result of unusual form of the Zeeman energy, which has terms linear in the
spin-wave operators and terms mixing excitations differ in the Wave-vector of
the magnetic structure. The following examples are considered: simple
easy-plane tetragonal antiferromagnets (AF), frustrated AF family
where etc. and cubic magnets with the Dzyaloshinskii-Moriya
interaction ( etc.). In all cases the BC becomes important when the
magnetic field becomes comparable with the spin-wave gap. The theory is
illustrated by existing experimental results.Comment: Submitted to J. of Phys. Condens. Matter (Proceedings of
International Conference "Highly Frustrated Magnets", Osaka (Japan), August
2006). 8 pages, 5 figure
Quantum treatment of neutrino in background matter
Motivated by the need of elaboration of the quantum theory of the spin light
of neutrino in matter (), we have studied in more detail the exact
solutions of the Dirac equation for neutrinos moving in the background matter.
These exact neutrino wavefunctions form a basis for a rather powerful method of
investigation of different neutrino processes in matter, which is similar to
the Furry representation of quantum electrodynamics in external fields. Within
this method we also derive the corresponding Dirac equation for an electron
moving in matter and consider the electromagnetic radiation ("spin light of
electron in matter", ) that can be emitted by the electron in this case.Comment: 10 pages, in: Proceedings of QFEXT'05 (The Seventh Workshop on
Quantum Field Theory under the Influence of External Conditions, IEEC, CSIC
and University of Barcelona, Barcelona, Catalonia, Spain, 5-9 September
2005.), ed. by Emilio Elizalde and Sergei Odintsov; published in Journal of
Physics
Complex Chiral Modulations in FeGe close to Magnetic Ordering
We report on detailed polarized small-angle neutron scattering on cubic FeGe
in magnetic fields applied either along (transverse) the scattering vector or
parallel (longitudinal)to the neutron beam. The () phase diagrams for all
principal axes contain a segmented -phase region just below the onset of
magnetic order. Hexagonal Bragg-spot patterns were observed across the entire
-phase region for the longitudinal geometry. Scattering intensity was
observed in parts of the A phase for both scattering configurations. Only in a
distinct pocket () vanishing scattering intensity was found in the
transverse geometry.Comment: This paper has been withdrawn by the author due to misunderstanding
with some of the co-author
Structural disorder versus chiral magnetism in CrNbS
The crystal structure of a disordered form of CrNbS has been
characterized using diffraction and inelastic scattering of synchrotron
radiation. In contrast to the previously reported symmetry (P622), the
crystal can be described by a regular twinning of an average P6 structure
with three disordered positions of the Cr ions. Short-range correlations of the
occupational disorder result in a quite intense and structured diffuse
scattering; a static nature of the disorder was unambiguously attributed by the
inelastic x-ray scattering. The diffuse scattering has been modeled using a
reverse Monte-Carlo algorithm assuming a disorder of the Cr sub-lattice only.
The observed correlated disorder of the Cr sub-lattice reduces the temperature
of the magnetic ordering from 130 K to 88 K and drastically modifies the field
dependence of the magnetization as it is evidenced by the SQUID magnetometery.
We conclude, that in contrast to the helicoidal spin structure assumed for
P622 form, the compound under study is ferromagnetically ordered with a
pronounced in-plane anisotropy
- …