969 research outputs found
Genome-scale metabolic network reconstruction of model animals as a platform for translational research
Genome-scale metabolic models (GEMs) are used extensively for analysis of mechanisms underlying human diseases and metabolic malfunctions. However, the lack of comprehensive and high-quality GEMs for model organisms restricts translational utilization of omics data accumulating from the use of various disease models. Here we present a unified platform of GEMs that covers five major model animals, including Mouse1 (Mus musculus), Rat1 (Rattus norvegicus), Zebrafish1 (Danio rerio), Fruitfly1 (Drosophila melanogaster), and Worm1 (Caenorhabditis elegans). These GEMs represent the most comprehensive coverage of the metabolic network by considering both orthology-based pathways and species-specific reactions. All GEMs can be interactively queried via the accompanying web portal Metabolic Atlas. Specifically, through integrative analysis of Mouse1 with RNA-sequencing data from brain tissues of transgenic mice we identified a coordinated up-regulation of lysosomal GM2 ganglioside and peptide degradation pathways which appears to be a signature metabolic alteration in Alzheimer's disease (AD) mouse models with a phenotype of amyloid precursor protein overexpression. This metabolic shift was further validated with proteomics data from transgenic mice and cerebrospinal fluid samples from human patients. The elevated lysosomal enzymes thus hold potential to be used as a biomarker for early diagnosis of AD. Taken together, we foresee that this evolving open-source platform will serve as an important resource to facilitate the development of systems medicines and translational biomedical applications
Mol. Cell. Proteomics
The term “proteomics” encompasses the large-scale detection and analysis of proteins and their post-translational modifications. Driven by major improvements in mass spectrometric instrumentation, methodology, and data analysis, the proteomics field has burgeoned in recent years. It now provides a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16 research papers reporting major recent progress by the PROSPECTS groups, including improvements to the resolution and sensitivity of the Orbitrap family of mass spectrometers, systematic detection of proteins using highly characterized antibody collections, and new methods for absolute as well as relative quantification of protein levels. Manuscripts in this issue exemplify approaches for performing quantitative measurements of cell proteomes and for studying their dynamic responses to perturbation, both during normal cellular responses and in disease mechanisms. Here we present a perspective on how the proteomics field is moving beyond simply identifying proteins with high sensitivity toward providing a powerful and versatile set of assay systems for characterizing proteome dynamics and thereby creating a new “third generation” proteomics strategy that offers an indispensible tool for cell biology and molecular medicine
Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism.
Most differentiated cells convert glucose to pyruvate in the cytosol through glycolysis, followed by pyruvate oxidation in the mitochondria. These processes are linked by the mitochondrial pyruvate carrier (MPC), which is required for efficient mitochondrial pyruvate uptake. In contrast, proliferative cells, including many cancer and stem cells, perform glycolysis robustly but limit fractional mitochondrial pyruvate oxidation. We sought to understand the role this transition from glycolysis to pyruvate oxidation plays in stem cell maintenance and differentiation. Loss of the MPC in Lgr5-EGFP-positive stem cells, or treatment of intestinal organoids with an MPC inhibitor, increases proliferation and expands the stem cell compartment. Similarly, genetic deletion of the MPC in Drosophila intestinal stem cells also increases proliferation, whereas MPC overexpression suppresses stem cell proliferation. These data demonstrate that limiting mitochondrial pyruvate metabolism is necessary and sufficient to maintain the proliferation of intestinal stem cells
A critical evaluation of methods for the reconstruction of tissue-specific models
Under the framework of constraint based modeling, genome-scale metabolic models (GSMMs) have been used for several tasks, such as metabolic engineering and phenotype prediction. More recently, their application in health related research has spanned drug discovery, biomarker identification and host-pathogen interactions, targeting diseases such as cancer, Alzheimer, obesity or diabetes. In the last years, the development of novel techniques for genome sequencing and other high-throughput methods, together with advances in Bioinformatics, allowed the reconstruction of GSMMs for human cells. Considering the diversity of cell types and tissues present in the human body, it is imperative to develop tissue-specific metabolic models. Methods to automatically generate these models, based on generic human metabolic models and a plethora of omics data, have been proposed. However, their results have not yet been adequately and critically evaluated and compared.
This work presents a survey of the most important tissue or cell type specific metabolic model reconstruction methods, which use literature, transcriptomics, proteomics and metabolomics data, together with a global template model. As a case study, we analyzed the consistency between several omics data sources and reconstructed distinct metabolic models of hepatocytes using different methods and data sources as inputs. The results show that omics data sources have a poor overlapping and, in some cases, are even contradictory. Additionally, the hepatocyte metabolic models generated are in many cases not able to perform metabolic functions known to be present in the liver tissue. We conclude that reliable methods for a priori omics data integration are required to support the reconstruction of complex models of human cells.Acknowledgments. S.C. thanks the FCT for the Ph.D. Grant SFRH/BD/ 80925/2011. The authors thank the FCT Strategic Project of UID/BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and the project “BioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes”, REF. NORTE-07-0124-FEDER-000028 Co-funded by the Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER
Automated Solid-Phase Subcloning Based on Beads Brought into Proximity by Magnetic Force
In the fields of proteomics, metabolic engineering and synthetic biology there is a need for high-throughput and reliable cloning methods to facilitate construction of expression vectors and genetic pathways. Here, we describe a new approach for solid-phase cloning in which both the vector and the gene are immobilized to separate paramagnetic beads and brought into proximity by magnetic force. Ligation events were directly evaluated using fluorescent-based microscopy and flow cytometry. The highest ligation efficiencies were obtained when gene- and vector-coated beads were brought into close contact by application of a magnet during the ligation step. An automated procedure was developed using a laboratory workstation to transfer genes into various expression vectors and more than 95% correct clones were obtained in a number of various applications. The method presented here is suitable for efficient subcloning in an automated manner to rapidly generate a large number of gene constructs in various vectors intended for high throughput applications
Troppo - A Python framework for the reconstruction of context-specific metabolic models
The surge in high-throughput technology availability for molecular biology has enabled the development of powerful predictive tools for use in many applications, including (but not limited to) the diagnosis and treatment of human diseases such as cancer. Genome-scale metabolic models have shown some promise in clearing a path towards precise and personalized medicine, although some challenges still persist. The integration of omics data and subsequent creation of context-specific models for specific cells/tissues still poses a significant hurdle, and most current tools for this purpose have been implemented using proprietary software. Here, we present a new software tool developed in Python, troppo - Tissue-specific RecOnstruction and Phenotype Prediction using Omics data, implementing a large variety of context-specific reconstruction algorithms. Our framework and workflow are modular, which facilitates the development of newer algorithms or omics data sources.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2019 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also thank the PhD scholarships funded by national funds through Fundacao para a Ciencia e Tecnologia, with references: SFRH/BD/133248/2017 (J.F.), SFRH/BD/118657/2016 (V.V.).info:eu-repo/semantics/publishedVersio
High RBM3 expression in prostate cancer independently predicts a reduced risk of biochemical recurrence and disease progression
<p>Abstract</p> <p>Background</p> <p>High expression of the RNA-binding protein RBM3 has previously been found to be associated with good prognosis in breast cancer, ovarian cancer, malignant melanoma and colorectal cancer. The aim of this study was to examine the prognostic impact of immunohistochemical RBM3 expression in prostate cancer.</p> <p>Findings</p> <p>Immunohistochemical RBM3 expression was examined in a tissue microarray with malignant and benign prostatic specimens from 88 patients treated with radical prostatectomy for localized disease. While rarely expressed in benign prostate gland epithelium, RBM3 was found to be up-regulated in prostate intraepithelial neoplasia and present in various fractions and intensities in invasive prostate cancer. High nuclear RBM3 expression was significantly associated with a prolonged time to biochemical recurrence (BCR) (HR 0.56, 95% CI: 0.34-0.93, <it>p </it>= 0.024) and clinical progression (HR 0.09, 95% CI: 0.01-0.71, <it>p = </it>0.021). These associations remained significant in multivariate analysis, adjusted for preoperative PSA level in blood, pathological Gleason score and presence or absence of extracapsular extension, seminal vesicle invasion and positive surgical margin (HR 0.41, 95% CI: 0.19-0.89, <it>p </it>= 0.024 for BCR and HR 0.06, 95% CI: 0.01-0.50, <it>p = </it>0.009 for clinical progression).</p> <p>Conclusion</p> <p>Our results demonstrate that high nuclear expression of RBM3 in prostate cancer is associated with a prolonged time to disease progression and, thus, a potential biomarker of favourable prognosis. The value of RBM3 for prognostication, treatment stratification and follow-up of prostate cancer patients should be further validated in larger studies.</p
Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues
The biology of multicellular organisms is coordinated across multiple size scales, from the subnanoscale of molecules to the macroscale, tissue-wide interconnectivity of cell populations. Here we introduce a method for super-resolution imaging of the multiscale organization of intact tissues. The method, called magnified analysis of the proteome (MAP), linearly expands entire organs fourfold while preserving their overall architecture and three-dimensional proteome organization. MAP is based on the observation that preventing crosslinking within and between endogenous proteins during hydrogel-tissue hybridization allows for natural expansion upon protein denaturation and dissociation. The expanded tissue preserves its protein content, its fine subcellular details, and its organ-scale intercellular connectivity. We use off-the-shelf antibodies for multiple rounds of immunolabeling and imaging of a tissue's magnified proteome, and our experiments demonstrate a success rate of 82% (100/122 antibodies tested). We show that specimen size can be reversibly modulated to image both inter-regional connections and fine synaptic architectures in the mouse brain.United States. National Institutes of Health (1-U01-NS090473-01
Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms
Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms
- …