1,279 research outputs found
URLs can facilitate machine learning classification of news stories across languages and contexts
Comparative scholars studying political news content at scale face the challenge of addressing multiple languages. While many train individual supervised machine learning classifiers for each language, this is a costly and time-consuming process. We propose that instead of rely-ing on thematic labels generated by manual coding, researchers can use ‘distant’ labels created by cues in article URLs. Sections reflected in URLs (e.g., nytimes.com/politics/) can therefore help create training material for supervised machine learning classifiers. Using cues provided by news media organizations, such an approach allows for efficient political news identification at scale while facilitating imple-mentation across languages. Using a dataset of approximately 870,000 URLs of news-related content from four countries (Italy, Germany, Netherlands, and Poland), we test this method by providing a comparison to ‘classical’ supervised machine learning and a multilingual BERT model, across four news topics. Our results suggest that the use of URL section cues to distantly annotate texts provides a cheap and easy-to-implement way of classifying large volumes of news texts that can save researchers many valuable resources without having to sacrifice quality
Electoral news sharing:A study of changes in news coverage and Facebook sharing behaviour during the 2018 Mexican elections
Patterns of news consumption are changing drastically. Citizens increasingly rely on social media such as Facebook to read and share political news. With the power of these platforms to expose citizens to political information, the implications for democracy are profound, making understanding what is shared during elections a priority on the research agenda. Nevertheless, to the best of our knowledge, no study has yet explicitly explored how elections transform news sharing behaviour on Facebook. This study begins to remedy this by (a) investigating changes in news coverage and news sharing behaviour on Facebook by comparing election and routine periods, and by (b) addressing the ‘news gap’ between preferences of journalists and news consumers on social media. Employing a novel data set of news articles (N = 83,054) in Mexico, findings show that during periods of heightened political activity, both the publication and dissemination of political news increases, the gap between the news choices of journalists and consumers narrows, and that news sharing resembles a zero-sum game, with increased political news sharing leading to a decrease in the sharing of other news
De-biased Populations of Kuiper Belt Objects from the Deep Ecliptic Survey
The Deep Ecliptic Survey (DES) discovered hundreds of Kuiper Belt objects
from 1998-2005. Follow-up observations yielded 304 objects with good dynamical
classifications (Classical, Scattered, Centaur, or 16 mean-motion resonances
with Neptune). The DES search fields are well documented, enabling us to
calculate the probability of detecting objects with particular orbital
parameters and absolute magnitudes at a randomized point in each orbit.
Grouping objects together by dynamical class leads, we estimate the orbital
element distributions (a, e, i) for the largest three classes (Classical, 3:2,
and Scattered) using maximum likelihood. Using H-magnitude as a proxy for the
object size, we fit a power law to the number of objects for 8 classes with at
least 5 detected members (246 objects). The best Classical slope is
alpha=1.02+/-0.01 (observed from 5<=H<=7.2). Six dynamical classes (Scattered
plus 5 resonances) are consistent in slope with the Classicals, though the
absolute number of objects is scaled. The exception to the power law relation
are the Centaurs (non-resonant with perihelia closer than Neptune, and thus
detectable at smaller sizes), with alpha=0.42+/-0.02 (7.5<H<11). This is
consistent with a knee in the H-distribution around H=7.2 as reported elsewhere
(Bernstein et al. 2004, Fraser et al. 2014). Based on the Classical-derived
magnitude distribution, the total number of objects (H<=7) in each class are:
Classical (2100+/-300 objects), Scattered (2800+/-400), 3:2 (570+/-80), 2:1
(400+/-50), 5:2 (270+/-40), 7:4 (69+/-9), 5:3 (60+/-8). The independent
estimate for the number of Centaurs in the same H range is 13+/-5. If instead
all objects are divided by inclination into "Hot" and "Cold" populations,
following Fraser et al. (2014), we find that alphaHot=0.90+/-0.02, while
alphaCold=1.32+/-0.02, in good agreement with that work.Comment: 26 pages emulateapj, 6 figures, 5 tables, accepted by A
Theoretical Transmission Spectra During Extrasolar Giant Planet Transits
The recent transit observation of HD 209458 b - an extrasolar planet orbiting
a sun-like star - confirmed that it is a gas giant and determined that its
orbital inclination is 85 degrees. This inclination makes possible
investigations of the planet atmosphere. In this paper we discuss the planet
transmission spectra during a transit. The basic tenet of the method is that
the planet atmosphere absorption features will be superimposed on the stellar
flux as the stellar flux passes through the planet atmosphere above the limb.
The ratio of the planet's transparent atmosphere area to the star area is
small, approximately 10^{-3} to 10^{-4}; for this method to work very strong
planet spectral features are necessary. We use our models of close-in
extrasolar giant planets to estimate promising absorption signatures: the
alkali metal lines, in particular the Na I and K I resonance doublets, and the
He I - triplet line at 1083.0 nm. If successful, observations
will constrain the line-of-sight temperature, pressure, and density. The most
important point is that observations will constrain the cloud depth, which in
turn will distinguish between different atmosphere models. We also discuss the
potential of this method for EGPs at different orbital distances and orbiting
non-solar-type stars.Comment: revised to agree with accepted paper, ApJ, in press. 12 page
Do Proto-Jovian Planets Drive Outflows?
We discuss the possibility that gaseous giant planets drive strong outflows
during early phases of their formation. We consider the range of parameters
appropriate for magneto-centrifugally driven stellar and disk outflow models
and find that if the proto-Jovian planet or accretion disk had a magnetic field
of >~ 10 Gauss and moderate mass inflow rates through the disk of less than
10^-7 M_J/yr that it is possible to drive an outflow. Estimates based both on
scaling from empirical laws observed in proto-stellar outflows and the
magneto-centrigugal disk and stellar+disk wind models suggest that winds with
mass outflow rates of 10^-8 M_J/yr and velocities of order ~ 20 km/s could be
driven from proto-Jovian planets. Prospects for detection and some implications
for the formation of the solar system are briefly discussed.Comment: AAS Latex, accepted for Ap
The Interaction of an Oblique Shock Wave with a Laminar Boundary Layer
The results of some experimental and theoretical studies of the interaction of oblique shock waves with laminar boundary layers are presented. Detailed measurements of pressure distribution, shear distribution, and velocity profiles were made during the interaction of oblique shock waves with laminar boundary layers on a flat plate. From these measurements a model was derived to predict the pressure levels characteristic of separation and the length of the separated region
Possible Observational Criteria for Distinguishing Brown Dwarfs from Planets
The difference in formation process between binary stars and planetary
systems is reflected in their composition as well as their orbital
architecture, particularly orbital eccentricity as a function of orbital
period. It is suggested here that this difference can be used as an
observational criterion to distinguish between brown dwarfs and planets.
Application of the orbital criterion suggests that with three possible
exceptions, all of the recently-discovered substellar companions discovered to
date may be brown dwarfs and not planets. These criterion may be used as a
guide for interpretation of the nature of sub-stellar mass companions to stars
in the future.Comment: LaTeX, 11 pages including 2 figures, accepted for publication in the
Astrophysical Journal Letter
Computational Communication Science in a Digital Society
Computational methods have added new approaches to the way many communication scientists do their work. We identify four developments that accelerated the adaption of computational methods: the increasing availability of digital data, the surge of large amounts of user-created data, the need to study new artefacts, and the improved accessibility of computational resources. We describe new data acquisition techniques, new research designs, and new analytical approaches that characterise the field. After discussing contributions to the open source community, to the methodological toolbox, as well as to the testing and development of theories, we sketch in broad strokes a research agenda for the coming years
Composition of the L5 Mars Trojans: Neighbors, not Siblings
Mars is the only terrestrial planet known to have Tro jan (co-orbiting)
asteroids, with a confirmed population of at least 4 objects. The origin of
these objects is not known; while several have orbits that are stable on
solar-system timescales, work by Rivkin et al. (2003) showed they have
compositions that suggest separate origins from one another. We have obtained
infrared (0.8-2.5 micron) spectroscopy of the two largest L5 Mars Tro jans, and
confirm and extend the results of Rivkin et al. (2003). We suggest that the
differentiated angrite meteorites are good spectral analogs for 5261 Eureka,
the largest Mars Trojan. Meteorite analogs for 101429 1998 VF31 are more varied
and include primitive achondrites and mesosiderites.Comment: 14 manuscript pages, 1 table, 6 figures. To be published in Icarus.
See companion paper 0709.1921 by Trilling et a
- …