1,114 research outputs found
Nonlinear Bloch modes in two-dimensional photonic lattices
We generate experimentally different types of two-dimensional Bloch waves of
a square photonic lattice by employing the phase imprinting technique. We probe
the local dispersion of the Bloch modes in the photonic lattice by analyzing
the linear diffraction of beams associated with the high-symmetry points of the
Brillouin zone, and also distinguish the regimes of normal, anomalous, and
anisotropic diffraction through observations of nonlinear self-action effects.Comment: 11 pages, 8 figure
Study of the characteristics of GEM detectors for the future FAIR experiment CBM
Characteristics of triple GEM detector have been studied systematically. The
variation of the effective gain and energy resolution of GEM with variation of
the applied voltage has been measured with Fe55 X-ray source for different gas
mixtures and with different gas flow rates. Long-term test of the GEM has also
been performed.Comment: 2 Pages, 6 figure
Sensitivity limitations in optical speed meter topology of gravitational-wave antennae
The possible design of QND gravitational-wave detector based on speed meter
principle is considered with respect to optical losses. The detailed analysis
of speed meter interferometer is performed and the ultimate sensitivity that
can be achieved is calculated. It is shown that unlike the position meter
signal-recycling can hardly be implemented in speed meter topology to replace
the arm cavities as it is done in signal-recycled detectors, such as GEO 600.
It is also shown that speed meter can beat the Standard Quantum Limit (SQL) by
the factor of in relatively wide frequency band, and by the factor of
in narrow band. For wide band detection speed meter requires quite
reasonable amount of circulating power MW. The advantage of the
considered scheme is that it can be implemented with minimal changes in the
current optical layout of LIGO interferometer.Comment: 20 pages, 12 figure
Sagnac Interferometer as a Speed-Meter-Type, Quantum-Nondemolition Gravitational-Wave Detector
According to quantum measurement theory, "speed meters" -- devices that
measure the momentum, or speed, of free test masses -- are immune to the
standard quantum limit (SQL). It is shown that a Sagnac-interferometer
gravitational-wave detector is a speed meter and therefore in principle it can
beat the SQL by large amounts over a wide band of frequencies. It is shown,
further, that, when one ignores optical losses, a signal-recycled Sagnac
interferometer with Fabry-Perot arm cavities has precisely the same
performance, for the same circulating light power, as the Michelson speed-meter
interferometer recently invented and studied by P. Purdue and the author. The
influence of optical losses is not studied, but it is plausible that they be
fairly unimportant for the Sagnac, as for other speed meters. With squeezed
vacuum (squeeze factor ) injected into its dark port, the
recycled Sagnac can beat the SQL by a factor over the
frequency band 10 {\rm Hz} \alt f \alt 150 {\rm Hz} using the same
circulating power kW as is used by the (quantum limited)
second-generation Advanced LIGO interferometers -- if other noise sources are
made sufficiently small. It is concluded that the Sagnac optical configuration,
with signal recycling and squeezed-vacuum injection, is an attractive candidate
for third-generation interferometric gravitational-wave detectors (LIGO-III and
EURO).Comment: 12 pages, 6 figure
A Halomethane thermochemical network from iPEPICO experiments and quantum chemical calculations
Internal energy selected halomethane cations CH3Cl+, CH2Cl2+, CHCl3+, CH3F+, CH2F2+, CHClF2+ and CBrClF2+ were prepared by vacuum ultraviolet photoionization, and their lowest energy dissociation channel studied using imaging photoelectron photoion coincidence spectroscopy (iPEPICO). This channel involves hydrogen atom loss for CH3F+, CH2F2+ and CH3Cl+, chlorine atom loss for CH2Cl2+, CHCl3+ and CHClF2+, and bromine atom loss for CBrClF2+. Accurate 0 K appearance energies, in conjunction with ab initio isodesmic and halogen exchange reaction energies, establish a thermochemical network, which is optimized to update and confirm the enthalpies of formation of the sample molecules and their dissociative photoionization products. The ground electronic states of CHCl3+, CHClF2+ and CBrClF2+ do not confirm to the deep well assumption, and the experimental breakdown curve deviates from the deep well model at low energies. Breakdown curve analysis of such shallow well systems supplies a satisfactorily succinct route to the adiabatic ionization energy of the parent molecule, particularly if the threshold photoelectron spectrum is not resolved and a purely computational route is unfeasible. The ionization energies have been found to be 11.47 ± 0.01 eV, 12.30 ± 0.02 eV and 11.23 ± 0.03 eV for CHCl3, CHClF2 and CBrClF2, respectively. The updated 0 K enthalpies of formation, ∆fHo0K(g) for the ions CH2F+, CHF2+, CHCl2+, CCl3+, CCl2F+ and CClF2+ have been derived to be 844.4 ± 2.1, 601.6 ± 2.7, 890.3 ± 2.2, 849.8 ± 3.2, 701.2 ± 3.3 and 552.2 ± 3.4 kJ mol–1, respectively. The ∆fHo0K(g) values for the neutrals CCl4, CBrClF2, CClF3, CCl2F2 and CCl3F and have been determined to be –94.0 ± 3.2, –446.6 ± 2.7, –702.1 ± 3.5, –487.8 ± 3.4 and –285.2 ± 3.2 kJ mol–1, respectively
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Analysis of LIGO data for gravitational waves from binary neutron stars
We report on a search for gravitational waves from coalescing compact binary
systems in the Milky Way and the Magellanic Clouds. The analysis uses data
taken by two of the three LIGO interferometers during the first LIGO science
run and illustrates a method of setting upper limits on inspiral event rates
using interferometer data. The analysis pipeline is described with particular
attention to data selection and coincidence between the two interferometers. We
establish an observational upper limit of 1.7 \times 10^{2}M_\odot$.Comment: 17 pages, 9 figure
A Prospective Study of the Association of Metacognitive Beliefs and Processes with Persistent Emotional Distress After Diagnosis of Cancer
Two hundred and six patients, diagnosed with primary breast or prostate cancer completed self-report questionnaires on two occasions: before treatment (T1) and 12 months later (T2). The questionnaires included: the Hospital Anxiety and Depression Scale; Impact of Events Scale; the Metacognitions Questionnaire-30 (MCQ-30) and the Illness Perceptions Questionnaire-revised. A series of regression analyses indicated that metacognitive beliefs at T1 predicted between 14 and 19 % of the variance in symptoms of anxiety, depression and trauma at T2 after controlling for age and gender. For all three outcomes, the MCQ-30 subscale ‘negative beliefs about worry’ made the largest individual contribution with ‘cognitive confidence’ also contributing in each case. For anxiety, a third metacognitive variable, ‘positive beliefs about worry’ also predicted variance in T2 symptoms. In addition, hierarchical analyses indicated that metacognitive beliefs explained a small but significant amount of variance in T2 anxiety (2 %) and T2 depression (4 %) over and above that explained by demographic variables, T1 symptoms and T1 illness perceptions. The findings suggest that modifying metacognitive beliefs and processes has the potential to alleviate distress associated with cancer
Delivering the right care to people with low back pain in low- and middle-income countries: The case of Nepal
QND measurements for future gravitational-wave detectors
Second-generation interferometric gravitational-wave detectors will be
operating at the Standard Quantum Limit, a sensitivity limitation set by the
trade off between measurement accuracy and quantum back action, which is
governed by the Heisenberg Uncertainty Principle. We review several schemes
that allows the quantum noise of interferometers to surpass the Standard
Quantum Limit significantly over a broad frequency band. Such schemes may be an
important component of the design of third-generation detectors.Comment: 22 pages, 6 figures, 1 table; In version 2, more tutorial information
on quantum noise in GW interferometer and several new items into Reference
list were adde
- …
