733 research outputs found
Suppression of Pdx-1 perturbs proinsulin processing, insulin secretion and GLP-1 signalling in INS-1 cells
Aims/hypothesis: Mutations in genes encoding HNF-4α, HNF-1α and IPF-1/Pdx-1 are associated with, respectively, MODY subtypes-1, -3 and -4. Impaired glucose-stimulated insulin secretion is the common primary defect of these monogenic forms of diabetes. A regulatory circuit between these three transcription factors has also been suggested. We aimed to explore how Pdx-1 regulates beta cell function and gene expression patterns. Methods: We studied two previously established INS-1 stable cell lines permitting inducible expression of, respectively, Pdx-1 and its dominant-negative mutant. We used HPLC for insulin processing, adenovirally encoded aequorin for cytosolic [Ca2+], and transient transfection of human growth hormone or patch-clamp capacitance recordings to monitor exocytosis. Results: Induction of DN-Pdx-1 resulted in defective glucose-stimulated and K+-depolarisation-induced insulin secretion in INS-1 cells, while overexpression of Pdx-1 had no effect. We found that DN-Pdx-1 caused down-regulation of fibroblast growth factor receptor 1 (FGFR1), and consequently prohormone convertases (PC-1/3 and -2). As a result, DN-Pdx-1 severely impaired proinsulin processing. In addition, induction of Pdx-1 suppressed the expression of glucagon-like peptide 1 receptor (GLP-1R), which resulted in marked reduction of both basal and GLP-1 agonist exendin-4-stimulated cellular cAMP levels. Induction of DN-Pdx-1 did not affect glucokinase activity, glycolysis, mitochondrial metabolism or ATP generation. The K+-induced cytosolic [Ca2+] rise and Ca2+-evoked exocytosis (membrane capacitance) were not abrogated. Conclusions/interpretation: The severely impaired proinsulin processing combined with decreased GLP-1R expression and cellular cAMP content, rather than metabolic defects or altered exocytosis, may contribute to the beta cell dysfunction induced by Pdx-1 deficienc
Rapid screening for glucose-6-phosphate dehydrogenase deficiency and haemoglobin polymorphisms in Africa by a simple high-throughput SSOP-ELISA method
BACKGROUND: Mutations in the haemoglobin beta-globin (HbB) and glucose-6-phosphate dehydrogenase (G6PD) genes cause widespread human genetic disorders such as sickle cell diseases and G6PD deficiency. In sub-Saharan Africa, a few predominant polymorphic variants of each gene account for a majority of these deficiencies. Examining at a larger scale the clinical importance of these independent genetic disorders, their possible association with malaria pathogenesis and innate resistance, and their relevance for antimalarial drug treatment, would be easier if an accurate screening method with limited costs was available. METHODS: A simple and rapid technique was developed to detect the most prominent single nucleotide polymorphisms (SNPs) in the HbB and G6PD genes. The method is able to detect the different haemoglobin polymorphisms A, S, C and E, as well as G6PD polymorphisms B, A and A- based on PCR-amplification followed by a hybridization step using sequence-specific oligonucleotide probes (SSOPs) specific for the SNP variants and quantified by ELISA. RESULTS: The SSOP-ELISA method was found to be specific, and compared well to the commonly used PCR-RFLP technique. Identical results were obtained in 98% (haemoglobin) and 95% (G6PD) of the tested 90 field samples from a high-transmission area in Tanzania, which were used to validate the new technique. CONCLUSION: The simplicity and accuracy of the new methodology makes it suitable for application in settings where resources are limited. It would serve as a valuable tool for research purposes by monitoring genotype frequencies in relation to disease epidemiology
Structural Insight into Epitopes in the Pregnancy-Associated Malaria Protein VAR2CSA
Pregnancy-associated malaria is caused by Plasmodium falciparum malaria parasites binding specifically to chondroitin sulfate A in the placenta. This sequestration of parasites is a major cause of low birth weight in infants and anemia in the mothers. VAR2CSA, a polymorphic multi-domain protein of the PfEMP1 family, is the main parasite ligand for CSA binding, and identification of protective antibody epitopes is essential for VAR2CSA vaccine development. Attempts to determine the crystallographic structures of VAR2CSA or its domains have not been successful yet. In this study, we propose 3D models for each of the VAR2CSA DBL domains and we show that regions in the fold of VAR2CSA inter-domain 2 and a PfEMP1 CIDR domain seem to be homologous to the EBA-175 and Pkα-DBL fold. This suggests that ID2 could be a functional domain. We also identify regions of VAR2CSA present on the surface of native VAR2CSA by comparing reactivity of plasma containing anti-VAR2CSA antibodies in peptide array experiments before and after incubation with native VAR2CSA. By this method we identify conserved VAR2CSA regions targeted by antibodies that react with the native molecule expressed on infected erythrocytes. By mapping the data onto the DBL models we present evidence suggesting that the S1+S2 DBL sub-domains are generally surface-exposed in most domains, whereas the S3 sub-domains are less exposed in native VAR2CSA. These results comprise an important step towards understanding the structure of VAR2CSA on the surface of CSA-binding infected erythrocytes
Temperature Dependence of Exciton Diffusion in Conjugated Polymers
The temperature dependence of the exciton dynamics in a conjugated polymer is studied using time-resolved spectroscopy. Photoluminescence decays were measured in heterostructured samples containing a sharp polymer-fullerene interface, which acts as an exciton quenching wall. Using a 1D diffusion model, the exciton diffusion length and diffusion coefficient were extracted in the temperature range of 4-293 K. The exciton dynamics reveal two temperature regimes: in the range of 4-150 K, the exciton diffusion length (coefficient) of ~3 nm (~1.5 × 10-4 cm2/s) is nearly temperature independent. Increasing the temperature up to 293 K leads to a gradual growth up to 4.5 nm (~3.2 × 10-4 cm2/s). This demonstrates that exciton diffusion in conjugated polymers is governed by two processes: an initial downhill migration toward lower energy states in the inhomogenously broadened density of states, followed by temperature activated hopping. The latter process is switched off below 150 K.
Insect cells are superior to Escherichia coli in producing malaria proteins inducing IgG targeting PfEMP1 on infected erythrocytes
<p>Abstract</p> <p>Background</p> <p>The PFD1235w <it>Plasmodium falciparum </it>erythrocyte membrane protein 1 (PfEMP1) antigen is associated with severe malaria in children and can be expressed on the surface of infected erythrocytes (IE) adhering to ICAM1. However, the exact three-dimensional structure of this PfEMP1 and its surface-exposed epitopes are unknown. An insect cell and <it>Escherichia coli </it>based system was used to express single and double domains encoded by the <it>pfd1235w var </it>gene. The resulting recombinant proteins have been evaluated for yield and purity and their ability to induce rat antibodies, which react with the native PFD1235w PfEMP1 antigen expressed on 3D7<sub>PFD1235w</sub>-IE. Their recognition by human anti-malaria antibodies from previously infected Tanzanian donors was also analysed.</p> <p>Methods</p> <p>The recombinant proteins were run on SDS-PAGE and Western blots for quantification and size estimation. Insect cell and <it>E. coli</it>-produced recombinant proteins were coupled to a bead-based Luminex assay to measure the plasma antibody reactivity of 180 samples collected from Tanzanian individuals. The recombinant proteins used for immunization of rats and antisera were also tested by flow cytometry for their ability to surface label 3D7<sub>PFD1235w</sub>-IE.</p> <p>Results</p> <p>All seven pAcGP67A constructs were successfully expressed as recombinant protein in baculovirus-infected insect cells and subsequently produced to a purity of 60-97% and a yield of 2-15 mg/L. By comparison, only three of seven pET101/D-TOPO constructs expressed in the <it>E. coli </it>system could be produced at all with purity and yield ranging from 3-95% and 6-11 mg/L. All seven insect cell, but only two of the <it>E. coli </it>produced proteins induced antibodies reactive with native PFD1235w expressed on 3D7<sub>PFD1235w</sub>-IE. The recombinant proteins were recognized in an age- and transmission intensity-dependent manner by antibodies from 180 Tanzanian individuals in a bead-based Luminex assay.</p> <p>Conclusions</p> <p>The baculovirus based insect cell system was distinctly superior to the <it>E. coli </it>expression system in producing a larger number of different recombinant PFD1235w protein domains and these were significantly easier to purify at a useful yield. However, proteins produced in both systems were able to induce antibodies in rats, which can recognize the native PFD1235w on the surface of IE.</p
Marked reduction in fertility among African women with urogenital infections:A prospective cohort study
<div><p>Background</p><p>There is paucity of data on risk factors for reduced fertility in low-income countries.</p><p>Objective</p><p>To investigate factors associated with fertility among women in rural north eastern Tanzania.</p><p>Subjects and methods</p><p>A cohort of 1248 non-pregnant women was followed with urine pregnancy testing every third month or more regularly if they reported a missed menstrual period. Pregnancy was confirmed with trans-abdominal ultrasound. Information regarding general health, socioeconomic status and obstetric-gynaecological history was collected. Factors associated with conceiving within 180 days were identified using multivariate logistic regression analyses.</p><p>Results</p><p>Among the 1248 women, 736 were followed for 180 days and 209 of these had an ultrasound confirmed pregnancy. During the follow-up period, 169/736 women were diagnosed with urogenital infections, including suspected sexually transmitted or reproductive tract infections, urinary tract infection, and vaginal candidiasis. Urogenital infections were significantly associated with reduced odds of conceiving within 180 days (adjusted OR (AOR) 0.21, 95% CI 0.11–0.36). Being above 30 years of age was also negatively associated with odds of conceiving (AOR 0.45, 95% CI 0.26–0.77). In contrast, women who recently stopped using hormonal contraceptives (AOR 2.86, 95% CI 1.45–5.70) and women with low socioeconomic status (AOR 1.56, 95% CI 1.04–2.33) were significantly more likely to become pregnant within 180 days.</p><p>Conclusion</p><p>Urogenital infection seems to be a major health factor associated with reduced chances of conceiving. Considering the availability of effective treatment options for these diseases, public health authorities should increase awareness of diagnostic tools in settings with limited resources in order to improve fertility.</p></div
Malaria morbidity and immunity among residents of villages with different Plasmodium falciparum transmission intensity in North-Eastern Tanzania
BACKGROUND: The relationship between the burden of uncomplicated malaria and transmission intensity is unclear and a better understanding of this relationship is important for the implementation of intervention programmes. METHODS: A 6-month longitudinal study monitoring risk factors for anaemia and febrile malaria episodes was conducted among individuals aged below 20 years, residing in three villages of different altitude in areas of high, moderate and low malaria transmission intensity in North-Eastern Tanzania. RESULTS: The burden of anaemia and malarial fever fell mainly on the youngest children and was highest in the village with high transmission intensity. Although a considerable percentage of individuals in all villages carried intestinal worms, logistic regression models indicated that Plasmodium falciparum was the only significant parasitic determinant of anaemia. Interestingly, children who carried low-density parasitaemia at the start of the study had a lower risk of contracting a febrile malaria episode but a higher risk of anaemia during the study period, than children who were slide negative at this point in time. CONCLUSION: Young children living in the high transmission village carried a very high anaemia burden, which could be attributed to malaria. The overall incidence of febrile malaria was also highest in the high transmission village particularly among those under five years of age. These data suggest that in rolling back malaria, available resources in prevention programmes should primarily be focussed on young children, particularly those residing in areas of high malaria transmission
Accumulation of Self-Reactive Naive and Memory B Cell Reveals Sequential Defects in B Cell Tolerance Checkpoints in Sjogren's Syndrome
This work was funded by grants number 18237 and 20089 from Arthritis Research UK (http://www.arthritisresearchuk.org) to MB and the William Harvey Research Foundation. EC was recipient of short-term travel fellowships from EMBO (ASTF 318-2010) and EFIS-IL
Cellulose filtration of blood from malaria patients for improving <i>ex vivo</i> growth of <i>Plasmodium falciparum</i> parasites
BACKGROUND: Establishing in vitro Plasmodium falciparum culture lines from patient parasite isolates can offer deeper understanding of geographic variations of drug sensitivity and mechanisms of malaria pathogenesis and immunity. Cellulose column filtration of blood is an inexpensive, rapid and effective method for the removal of host factors, such as leucocytes and platelets, significantly improving the purification of parasite DNA in a blood sample. METHODS: In this study, the effect of cellulose column filtration of venous blood on the initial in vitro growth of P. falciparum parasite isolates from Tanzanian children admitted to hospital was tested. The parasites were allowed to expand in culture without subcultivation until 5 days after admission or the appearance of dead parasites and parasitaemia was determined daily. To investigate whether the filtration had an effect on clonality, P. falciparum merozoite surface protein 2 genotyping was performed using nested PCR on extracted genomic DNA, and the var gene transcript levels were investigated, using quantitative PCR on extracted RNA, at admission and 4 days of culture. RESULTS: The cellulose-filtered parasites grew to higher parasitaemia faster than non-filtered parasites seemingly due to a higher development ratio of ring stage parasites progressing into the late stages. Cellulose filtration had no apparent effect on clonality or var gene expression; however, evident differences were observed after only 4 days of culture in both the number of clones and transcript levels of var genes compared to the time of admission. CONCLUSIONS: Cellulose column filtration of parasitized blood is a cheap, applicable method for improving cultivation of P. falciparum field isolates for ex vivo based assays; however, when assessing phenotype and genotype of cultured parasites, in general, assumed to represent the in vivo infection, caution is advised. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12936-017-1714-2) contains supplementary material, which is available to authorized users
- …