865 research outputs found
Genomic chart guiding embryonic stem cell cardiopoiesis
Gene expression analysis of embryonic stem cells undergoing guided cardiogenic differentiation reveals the molecular fingerprint for committing to cardiac cell fate
From Jeff=1/2 insulator to p-wave superconductor in single-crystal Sr2Ir1-xRuxO4 (0 < x< 1)
Sr2IrO4 is a magnetic insulator assisted by strong spin-orbit coupling (SOC)
whereas the Sr2RuO4 is a p-wave superconductor. The contrasting ground states
have been shown to result from the critical role of the strong SOC in the
iridate. Our investigation of structural, transport, and magnetic properties
reveals that substituting 4d Ru4+ (4d4) ions for 5d Ir4+(5d5) ions in Sr2IrO4
directly adds holes to the t2g bands, reduces the SOC and thus rebalances the
competing energies in single-crystal Sr2Ir1-xRuxO4. A profound effect of Ru
doping driving a rich phase diagram is a structural phase transition from a
distorted I41/acd to a more ideal I4/mmm tetragonal structure near x=0.50 that
accompanies a phase transition from an antiferromagnetic-insulating state to a
paramagnetic-metal state. We also make a comparison drawn with Rh doped
Sr2IrO4, highlighting important similarities and differences.Comment: 18 pages,7 figure
Evolution of Magnetism in Single-Crystal Honeycomb Iridates
We report the successful synthesis of single-crystals of the layered iridate,
(NaLi)IrO, , and a thorough study of
its structural, magnetic, thermal and transport properties. The new compound
allows a controlled interpolation between NaIrO and LiIrO,
while maintaing the novel quantum magnetism of the honeycomb Ir planes.
The measured phase diagram demonstrates a dramatic suppression of the N\'eel
temperature, , at intermediate suggesting that the magnetic order in
NaIrO and LiIrO are distinct, and that at , the
compound is close to a magnetically disordered phase that has been sought after
in NaIrO and LiIrO. By analyzing our magnetic data with a
simple theoretical model we also show that the trigonal splitting, on the
Ir ions changes sign from NaIrO and LiIrO, and the
honeycomb iridates are in the strong spin-orbit coupling regime, controlled by
\jeff=1/2 moments.Comment: updated version with more dat
Coexisting charge and magnetic orders in the dimer-chain iridate Ba5AlIr2O11
We have synthesized and studied single-crystal Ba5AlIr2O11 that features
dimer chains of two inequivalent octahedra occupied by tetravalent and
pentavalent ions, respectively. Ba5AlIr2O11 is a Mott insulator that undergoes
a subtle structural phase transition near 210 K and a magnetic transition at
4.5 K; the latter transition is surprisingly resistant to applied magnetic
fields up to 12 T, but sensitive to modest applied pressure. All results
indicate that the phase transition at 210 K signals an enhanced charge order
that induces electrical dipoles and strong dielectric response near 210 K. It
is clear that the strong covalency and spin-orbit interaction (SOI) suppress
double exchange in Ir dimers and stabilize a novel magnetic state. The behavior
of Ba5AlIr2O11 therefore provides unique insights into the physics of SOI along
with strong covalency in competition with double exchange interactions of
comparable strength.Comment: 6 figures, 20 pages. arXiv admin note: text overlap with
arXiv:1505.0087
Tuning electronic structures via epitaxial strain in Sr2IrO4 thin films
We have synthesized epitaxial Sr2IrO4 thin-films on various substrates and
studied their electronic structures as a function of lattice-strains. Under
tensile (compressive) strains, increased (decreased) Ir-O-Ir bond-angles are
expected to result in increased (decreased) electronic bandwidths. However, we
have observed that the two optical absorption peaks near 0.5 eV and 1.0 eV are
shifted to higher (lower) energies under tensile (compressive) strains,
indicating that the electronic-correlation energy is also affected by in-plane
lattice-strains. The effective tuning of electronic structures under
lattice-modification provides an important insight into the physics driven by
the coexisting strong spin-orbit coupling and electronic correlation.Comment: 9 pages, 5 figures, 1 tabl
- …