865 research outputs found

    Genomic chart guiding embryonic stem cell cardiopoiesis

    Get PDF
    Gene expression analysis of embryonic stem cells undergoing guided cardiogenic differentiation reveals the molecular fingerprint for committing to cardiac cell fate

    From Jeff=1/2 insulator to p-wave superconductor in single-crystal Sr2Ir1-xRuxO4 (0 < x< 1)

    Get PDF
    Sr2IrO4 is a magnetic insulator assisted by strong spin-orbit coupling (SOC) whereas the Sr2RuO4 is a p-wave superconductor. The contrasting ground states have been shown to result from the critical role of the strong SOC in the iridate. Our investigation of structural, transport, and magnetic properties reveals that substituting 4d Ru4+ (4d4) ions for 5d Ir4+(5d5) ions in Sr2IrO4 directly adds holes to the t2g bands, reduces the SOC and thus rebalances the competing energies in single-crystal Sr2Ir1-xRuxO4. A profound effect of Ru doping driving a rich phase diagram is a structural phase transition from a distorted I41/acd to a more ideal I4/mmm tetragonal structure near x=0.50 that accompanies a phase transition from an antiferromagnetic-insulating state to a paramagnetic-metal state. We also make a comparison drawn with Rh doped Sr2IrO4, highlighting important similarities and differences.Comment: 18 pages,7 figure

    Evolution of Magnetism in Single-Crystal Honeycomb Iridates

    Get PDF
    We report the successful synthesis of single-crystals of the layered iridate, (Na1x_{1-x}Lix_{x})2_2IrO3_3, 0x0.90\leq x \leq 0.9, and a thorough study of its structural, magnetic, thermal and transport properties. The new compound allows a controlled interpolation between Na2_2IrO3_3 and Li2_2IrO3_3, while maintaing the novel quantum magnetism of the honeycomb Ir4+^{4+} planes. The measured phase diagram demonstrates a dramatic suppression of the N\'eel temperature, TNT_N, at intermediate xx suggesting that the magnetic order in Na2_2IrO3_3 and Li2_2IrO3_3 are distinct, and that at x0.7x\approx 0.7, the compound is close to a magnetically disordered phase that has been sought after in Na2_2IrO3_3 and Li2_2IrO3_3. By analyzing our magnetic data with a simple theoretical model we also show that the trigonal splitting, on the Ir4+^{4+} ions changes sign from Na2_2IrO3_3 and Li2_2IrO3_3, and the honeycomb iridates are in the strong spin-orbit coupling regime, controlled by \jeff=1/2 moments.Comment: updated version with more dat

    Coexisting charge and magnetic orders in the dimer-chain iridate Ba5AlIr2O11

    Get PDF
    We have synthesized and studied single-crystal Ba5AlIr2O11 that features dimer chains of two inequivalent octahedra occupied by tetravalent and pentavalent ions, respectively. Ba5AlIr2O11 is a Mott insulator that undergoes a subtle structural phase transition near 210 K and a magnetic transition at 4.5 K; the latter transition is surprisingly resistant to applied magnetic fields up to 12 T, but sensitive to modest applied pressure. All results indicate that the phase transition at 210 K signals an enhanced charge order that induces electrical dipoles and strong dielectric response near 210 K. It is clear that the strong covalency and spin-orbit interaction (SOI) suppress double exchange in Ir dimers and stabilize a novel magnetic state. The behavior of Ba5AlIr2O11 therefore provides unique insights into the physics of SOI along with strong covalency in competition with double exchange interactions of comparable strength.Comment: 6 figures, 20 pages. arXiv admin note: text overlap with arXiv:1505.0087

    Tuning electronic structures via epitaxial strain in Sr2IrO4 thin films

    Get PDF
    We have synthesized epitaxial Sr2IrO4 thin-films on various substrates and studied their electronic structures as a function of lattice-strains. Under tensile (compressive) strains, increased (decreased) Ir-O-Ir bond-angles are expected to result in increased (decreased) electronic bandwidths. However, we have observed that the two optical absorption peaks near 0.5 eV and 1.0 eV are shifted to higher (lower) energies under tensile (compressive) strains, indicating that the electronic-correlation energy is also affected by in-plane lattice-strains. The effective tuning of electronic structures under lattice-modification provides an important insight into the physics driven by the coexisting strong spin-orbit coupling and electronic correlation.Comment: 9 pages, 5 figures, 1 tabl
    corecore