51,773 research outputs found
Skyrme-force time-dependent Hartree-Fock calculations with axial symmetry
We discuss axially symmetric time-dependent Hartree-Fock calculations using a finite-range modification of the Skyrme energy functional. The finite-difference forms of the coordinate-space time-dependent Hartree-Fock equations, the method of time evolution, and other numerical aspects are presented. Detailed results for (^84)Kr-induced deep-inelastic collisions with (^208)Pb at E_(lab) = 494 MeV and with (^209)Bi at E_(lab) = 600 MeV and 714 MeV are compared with experiment.
[NUCLEAR REACTIONS (^84)Kr + (^208)Pb at E_lab = 494 MeV and (^84)Kr + (^209)Bi at E_1ab=600 and 714 MeV, in the time-dependent Hartree-Fock approximation. Strongy
damped collisions. Details of Skyrme force calculations with axial symmetry.
Precision Charmonium Spectroscopy From Lattice QCD
We present results for Charmonium spectroscopy using Non-Relativistic QCD
(NRQCD). For the NRQCD action the leading order spin-dependent and next to
leading order spin-independent interactions have been included with
tadpole-improved coefficients. We use multi-exponential fits to multiple
correlation functions to extract ground and excited states. Splittings
between the lowest , and states are given and we have accurate
values for the state hyperfine splitting and the fine structure.
Agreement with experiment is good - the remaining systematic errors are
discussed.Comment: 23 pages uuencoded latex file. Contains figures in late
A strong 3.4 micron emission feature in comet Austin 1989c1
High resolution 2.8-4.0 micron spectra of the 'new' comet Austin 1989c1, taken on 15-16 May 1990 confirm the presence of the broad emission features around 3.4 and 3.52 micron seen in a number of bright comets and ascribed to organic material. Both the 3.4 micron band strength and the 3.52/3.36 micron flux ratios are among the largest so far observed. The data are consistent with the relationship between band strength and water production rate that was recently derived. Excess emission at 3.28 and 3.6 micron cannot be unambiguously identified as features due to the poor signal-to-noise ratio
Knowledge tree: Putting discourse into computerâbased learning
Most CBL materials currently in use model only the declarative aspects of the learning process. If such courseware is used without careful planning, this can be dangerous because one of the most fundamental aspects of education is the dialogue that occurs between teachers and the students. Traditionally, this has taken place in informal discussions as well as in formal smallâgroup learning sessions such as the conventional tutorial. However, as the studentâstaff ratio increases, so does the opportunity for this type of personal dialogue decrease. Modern networking technology offers a huge potential to add discourse to CBL, but there are many pedagogical problems involved with the intrinsically ephemeral and anarchic nature both of the Internet and of most conferencing or bulletinâboard systems. In this paper we describe a software system called Knowledge Tree (KT) which we have developed to address some of these issues. KT combines a hierarchical conceptâoriented database functionality with that of a Usenetâstyle bulletin board Using this, a knowledge garden may be developed for any subject area. These each contain a hypermedia database of frequently asked questions, together with answers provided by subject experts. There is provision for interâstudent discussions of problems and issues. When students ask new questions these are automatically emailed to a relevant subject expert (determined by a subjectâspecific concept thesaurus). The answer is then placed in the database which eventually grows to become a valuable teaching resource. KT is disciplineâindependent as the concept thesaurus can be changed to encapsulate any domain of knowledge. We have used it in support of conventional lecture courses, as an important component of a multimedia course, and for general IT support. These examples illustrate the role that this system can play both in basic information provision, and in facilitating the discussion of deep issues
SiGMa: Simple Greedy Matching for Aligning Large Knowledge Bases
The Internet has enabled the creation of a growing number of large-scale
knowledge bases in a variety of domains containing complementary information.
Tools for automatically aligning these knowledge bases would make it possible
to unify many sources of structured knowledge and answer complex queries.
However, the efficient alignment of large-scale knowledge bases still poses a
considerable challenge. Here, we present Simple Greedy Matching (SiGMa), a
simple algorithm for aligning knowledge bases with millions of entities and
facts. SiGMa is an iterative propagation algorithm which leverages both the
structural information from the relationship graph as well as flexible
similarity measures between entity properties in a greedy local search, thus
making it scalable. Despite its greedy nature, our experiments indicate that
SiGMa can efficiently match some of the world's largest knowledge bases with
high precision. We provide additional experiments on benchmark datasets which
demonstrate that SiGMa can outperform state-of-the-art approaches both in
accuracy and efficiency.Comment: 10 pages + 2 pages appendix; 5 figures -- initial preprin
- âŠ