77 research outputs found
Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity
The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1α on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1α in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1α induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1α enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1α boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1α coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1α does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1α mimic the beneficial effects of endurance training on muscle metabolism in this context
Laboratory-acquired infections and pathogen escapes worldwide between 2000 and 2021: a scoping review
Laboratory-acquired infections (LAIs) and accidental pathogen escape from laboratory settings (APELS) are major concerns for the community. A risk-based approach for pathogen research management within a standard biosafety management framework is recommended but is challenging due to reasons such as inconsistency in risk tolerance and perception. Here, we performed a scoping review using publicly available, peer-reviewed journal and media reports of LAIs and instances of APELS between 2000 and 2021. We identified LAIs in 309 individuals in 94 reports for 51 pathogens. Eight fatalities (2·6% of all LAIs) were caused by infection with Neisseria meningitidis (n=3, 37·5%), Yersinia pestis (n=2, 25%), Salmonella enterica serotype Typhimurium (S Typhimurium; n=1, 12·5%), or Ebola virus (n=1, 12·5%) or were due to bovine spongiform encephalopathy (n=1, 12·5%). The top five LAI pathogens were S Typhimurium (n=154, 49·8%), Salmonella enteritidis (n=21, 6·8%), vaccinia virus (n=13, 4·2%), Brucella spp (n=12, 3·9%), and Brucella melitensis (n=11, 3·6%). 16 APELS were reported, including those for Bacillus anthracis, SARS-CoV, and poliovirus (n=3 each, 18·8%); Brucella spp and foot and mouth disease virus (n=2 each, 12·5%); and variola virus, Burkholderia pseudomallei, and influenza virus H5N1 (n=1 each, 6·3%). Continual improvement in LAI and APELS management via their root cause analysis and thorough investigation of such incidents is essential to prevent future occurrences. The results are biased due to the reliance on publicly available information, which emphasises the need for formalised global LAIs and APELS reporting to better understand the frequency of and circumstances surrounding these incidents
A Systematic Approach to Multiple Breath Nitrogen Washout Test Quality
Background: Accurate estimates of multiple breath washout (MBW) outcomes require correct operation of the device, appropriate distraction of the subject to ensure they breathe in a manner representative of their relaxed tidal breathing pattern, and appropriate interpretation of the acquired data. Based on available recommendations for an acceptable MBW test, we aimed to develop a protocol to systematically evaluate MBW measurements based on these criteria. Methods: 50MBWtest occasions were systematically reviewed for technical elements and whether the breathing pattern was representative of relaxed tidal breathing by an experienced MBW operator. The impact of qualitative and quantitative criteria on inter-observer agreement was assessed across eight MBW operators (n = 20 test occasions, compared using a Kappa statistic). Results: Using qualitative criteria, 46/168 trials were rejected: 16.6%were technically unacceptable and 10.7% were excluded due to inappropriate breathing pattern. Reviewer agreement was good using qualitative criteria and further improved with quantitative criteria from (κ = 0.53– 0.83%) to (κ 0.73–0.97%), but at the cost of exclusion of further test occasions in this retrospective data analysis. Conclusions: The application of the systematic review improved inter-observer agreement but did not affect reported MBW outcomes
Arctigenin Efficiently Enhanced Sedentary Mice Treadmill Endurance
Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK) as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae) strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK) and serine/threonine kinase 11(LKB1)-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO) related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases
Adipose Tissue Plasticity During Catch-Up Fat Driven by Thrifty Metabolism: Relevance for Muscle-Adipose Glucose Redistribution During Catch-Up Growth
OBJECTIVE: Catch-up growth, a risk factor for later type 2 diabetes, is characterized by hyperinsulinemia, accelerated body-fat recovery (catch-up fat), and enhanced glucose utilization in adipose tissue. Our objective was to characterize the determinants of enhanced glucose utilization in adipose tissue during catch-up fat. RESEARCH DESIGN AND METHODS: White adipose tissue morphometry, lipogenic capacity, fatty acid composition, insulin signaling, in vivo glucose homeostasis, and insulinemic response to glucose were assessed in a rat model of semistarvation-refeeding. This model is characterized by glucose redistribution from skeletal muscle to adipose tissue during catch-up fat that results solely from suppressed thermogenesis (i.e., without hyperphagia). RESULTS: Adipose tissue recovery during the dynamic phase of catch-up fat is accompanied by increased adipocyte number with smaller diameter, increased expression of genes for adipogenesis and de novo lipogenesis, increased fatty acid synthase activity, increased proportion of saturated fatty acids in triglyceride (storage) fraction but not in phospholipid (membrane) fraction, and no impairment in insulin signaling. Furthermore, it is shown that hyperinsulinemia and enhanced adipose tissue de novo lipogenesis occur concomitantly and are very early events in catch-up fat. CONCLUSIONS: These findings suggest that increased adipose tissue insulin stimulation and consequential increase in intracellular glucose flux play an important role in initiating catch-up fat. Once activated, the machinery for lipogenesis and adipogenesis contribute to sustain an increased insulin-stimulated glucose flux toward fat storage. Such adipose tissue plasticity could play an active role in the thrifty metabolism that underlies glucose redistribution from skeletal muscle to adipose tissue
Reducing Calorie Intake May Not Help You Lose Body Weight
Background Previously a meta-analysis found that multi-vitamin/mineral supplementation reduced mild psychiatric symptoms. To establish mechanisms, and to pin-point the individuals most likely to benefit, the role of various polymorphisms were examined. Supplementation was found to influence mild-psychiatric symptoms depending on the form of particular genes: genes that are risk factors for psychiatric disease and influence mechanisms by which drugs act. Methods In a double-blind trial young healthy males rated psychiatric symptoms, before and after taking vitamin/mineral supplements for three months, and the response was related to single nucleotide polymorphisms associated with catecholamines and serotonin. Outcomes With rs1800497 (Taq1A; dopamine D2 receptor), those with the CT allele benefitted from a vitamin/mineral supplement. Similarly with rs1800955 (DRD4 – dopamine D4 receptor), the mood of those with the CC allele benefitted selectively. With rs6296 (HTR1B) only those with the GC alleles responded, and with rs6311 (HTR2A) supplementation produced a beneficial response in those with the GG allele. With rs1050565 (5HTT gene - Human Serotonin Transporter gene) supplementation increased the mental health of those with the AA allele. Interpretation In a situation where a substantial proportion of patients do not benefit from drug therapy, and there is an element of trial and error when prescribing, it was proposed that future work should consider distinguishing patients depending on various polymorphisms and micro-nutrient status. In those with particular alleles, we should consider if drug administration and vitamin / mineral status interact synergistically to influence the therapeutic outcom
Neonatal exendin-4 reduces growth, fat deposition and glucose tolerance during treatment in the intrauterine growth-restricted lamb
BACKGROUND IUGR increases the risk of type 2 diabetes mellitus (T2DM) in later life, due to reduced insulin sensitivity and impaired adaptation of insulin secretion. In IUGR rats, development of T2DM can be prevented by neonatal administration of the GLP-1 analogue exendin-4. We therefore investigated effects of neonatal exendin-4 administration on insulin action and β-cell mass and function in the IUGR neonate in the sheep, a species with a more developed pancreas at birth. METHODS Twin IUGR lambs were injected s.c. daily with vehicle (IUGR+Veh, n = 8) or exendin-4 (1 nmol.kg-1, IUGR+Ex-4, n = 8), and singleton control lambs were injected with vehicle (CON, n = 7), from d 1 to 16 of age. Glucose-stimulated insulin secretion and insulin sensitivity were measured in vivo during treatment (d 12–14). Body composition, β-cell mass and in vitro insulin secretion of isolated pancreatic islets were measured at d 16. PRINCIPLE FINDINGS IUGR+Veh did not alter in vivo insulin secretion or insulin sensitivity or β-cell mass, but increased glucose-stimulated insulin secretion in vitro. Exendin-4 treatment of the IUGR lamb impaired glucose tolerance in vivo, reflecting reduced insulin sensitivity, and normalised glucose-stimulated insulin secretion in vitro. Exendin-4 also reduced neonatal growth and visceral fat accumulation in IUGR lambs, known risk factors for later T2DM. CONCLUSIONS Neonatal exendin-4 induces changes in IUGR lambs that might improve later insulin action. Whether these effects of exendin-4 lead to improved insulin action in adult life after IUGR in the sheep, as in the PR rat, requires further investigation.Kathryn L. Gatford, Siti A. Sulaiman, Saidatul N. B. Mohammad, Miles J. De Blasio, M. Lyn Harland, Rebecca A. Simmons, Julie A. Owen
Skeletal muscle PGC-1α controls whole-body lactate homeostasis through estrogen-related receptor α-dependent activation of LDH B and repression of LDH A
The peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) controls metabolic adaptations. We now show that PGC-1α in skeletal muscle drives the expression of lactate dehydrogenase (LDH) B in an estrogen-related receptor-α-dependent manner. Concomitantly, PGC-1α reduces the expression of LDH A and one of its regulators, the transcription factor myelocytomatosis oncogene. PGC-1α thereby coordinately alters the composition of the LDH complex and prevents the increase in blood lactate during exercise. Our results show how PGC-1α actively coordinates lactate homeostasis and provide a unique molecular explanation for PGC-1α-mediated muscle adaptations to training that ultimately enhance exercise performance and improve metabolic health
- …