16 research outputs found
Numerical simulation of a compressible vortex–wall interaction
The wall interaction of isolated compressible vortices generated from a short driver section shock tube has been simulated numerically by solving the Navier–Stokes equations in axisymmetric form. The dynamics of shock-free (incident shock Mach number M=1.36) and shock-embedded (M=1.57) compressible vortices near the wall has been studied in detail. The AUSM+ scheme with a fifth-order upwind interpolation formula is used for the convective fluxes. Time integration is performed using a low dissipative and dispersive fourth-order six-stage Runge–Kutta scheme. The evolution of primary and wall vortices has been shown using the velocity field, vorticity field, and numerical schlierens. The vortex impingement, shocklets, wall vortices, and their lift-off are clearly identified from the wall pressure time history. It has been observed that the maximum vorticity of the wall vortices reaches close to 30 % of the primary vortex for M=1.36 and it reaches up to 60 % for M=1.57. The net pressure force on the wall due to incident shock impingement is dominant compared to the compressible vortex impingement and their evolution
Quantifying the genetic influence on mammalian vascular tree structure
The ubiquity of fractal vascular trees throughout the plant and animal kingdoms is postulated to be due to evolutionary advantages conferred through efficient distribution of nutrients to multicellular organisms. The implicit, and untested, assertion in this theory is that the geometry of vascular trees is heritable. Because vascular trees are constructed through the iterative use of signaling pathways modified by local factors at each step of the branching process, we sought to investigate how genetic and nongenetic influences are balanced to create vascular trees and the regional distribution of nutrients through them. We studied the spatial distribution of organ blood flow in armadillos because they have genetically identical littermates, allowing us to quantify the genetic influence. We determined that the regional distribution of blood flow is strongly correlated between littermates (r2 = 0.56) and less correlated between unrelated animals (r2 = 0.36). Using an ANOVA model, we estimate that 67% of the regional variability in organ blood flow is genetically controlled. We also used fractal analysis to characterize the distribution of organ blood flow and found shared patterns within the lungs and hearts of related animals, suggesting common control over the vascular development of these two organs. We conclude that the geometries of fractal vascular trees are heritable and could be selected through evolutionary pressures. Furthermore, considerable postgenetic modifications may allow vascular trees to adapt to local factors and provide a flexibility that would not be possible in a rigid system