226 research outputs found
WISER Deliverable D3.3-2: The importance of invertebrate spatial and temporal variation for ecological status classification for European lakes
European lakes are affected by many human induced disturbances. In principle, ecological
theories predict that the structure and functioning of benthic invertebrate assemblage (one of
the Biological Quality Elements following the Water Framework Directive, WFD
terminology) change in response to the level of disturbances, making this biological element
suitable for assessing the status and management of lake ecosystems. In practice, to set up
assessment systems based on invertebrates, we need to distiguish community changes that are
related to human pressures from those that are inherent natural variability. This task is
complicated by the fact that invertebrate communities inhabiting the littoral and the profundal
zones of lakes are constrained by different factors and respond unevenly to distinct human
disturbances. For example it is not clear yet how the invertebrates assemblages respond to
watershed and shoreline alterations, nor the relative importance of spatial and temporal
factors on assemblage dynamics and relative bioindicator values of taxa, the habitat
constraints on species traits and other taxonomic and methodological limitations.
The current lack of knowledge of basic features of invertebrate temporal and spatial variations
is limiting the fulfillment of the EU-wide intercalibration of lake ecological quality
assessment systems in Europe, and thus compromising the basis for setting the environmental
objectives as required by the WFD. The aim of this deliverable is to provide a contribution
towards the understanding of basic sources of spatial and temporal variation of lake
invertebrate assemblages. The report is structured around selected case studies, manly
involving the analysis of existing datasets collated within WISER. The case studies come
from different European lake types in the Northern, Central, Alpine and Mediterranean
regions. All chapters have an obvious applied objective and our aim is to provide to those
dealing with WFD implementation at various levels useful information to consider when
designing monitoring programs and / or invertebrate-based classification systems
A general wavelet-based profile decomposition in the critical embedding of function spaces
We characterize the lack of compactness in the critical embedding of
functions spaces having similar scaling properties in the
following terms : a sequence bounded in has a subsequence
that can be expressed as a finite sum of translations and dilations of
functions such that the remainder converges to zero in as
the number of functions in the sum and tend to . Such a
decomposition was established by G\'erard for the embedding of the homogeneous
Sobolev space into the in dimensions with
, and then generalized by Jaffard to the case where is a Riesz
potential space, using wavelet expansions. In this paper, we revisit the
wavelet-based profile decomposition, in order to treat a larger range of
examples of critical embedding in a hopefully simplified way. In particular we
identify two generic properties on the spaces and that are of key use
in building the profile decomposition. These properties may then easily be
checked for typical choices of and satisfying critical embedding
properties. These includes Sobolev, Besov, Triebel-Lizorkin, Lorentz, H\"older
and BMO spaces.Comment: 24 page
Spatial modes for transmission of chikungunya virus during a large chikungunya outbreak in Italy: a modeling analysis
14openInternationalBothBackground
The spatial spread of many mosquito-borne diseases occurs by focal spread at the scale of a few hundred meters and over longer distances due to human mobility. The relative contributions of different spatial scales for transmission of chikungunya virus require definition to improve outbreak vector control recommendations.
Methods
We analyzed data from a large chikungunya outbreak mediated by the mosquito Aedes albopictus in the Lazio region, Italy, consisting of 414 reported human cases between June and November 2017. Using dates of symptom onset, geographic coordinates of residence, and information from epidemiological questionnaires, we reconstructed transmission chains related to that outbreak.
Results
Focal spread (within 1 km) accounted for 54.9% of all cases, 15.8% were transmitted at a local scale (1–15 km) and the remaining 29.3% were exported from the main areas of chikungunya circulation in Lazio to longer distances such as Rome and other geographical areas. Seventy percent of focal infections (corresponding to 38% of the total 414 cases) were transmitted within a distance of 200 m (the buffer distance adopted by the national guidelines for insecticide spraying). Two main epidemic clusters were identified, with a radius expanding at a rate of 300–600 m per month. The majority of exported cases resulted in either sporadic or no further transmission in the region.
Conclusions
Evidence suggest that human mobility contributes to seeding a relevant number of secondary cases and new foci of transmission over several kilometers. Reactive vector control based on current guidelines might allow a significant number of secondary clusters in untreated areas, especially if the outbreak is not detected early. Existing policies and guidelines for control during outbreaks should recommend the prioritization of preventive measures in neighboring territories with known mobility flows to the main areas of transmission.openGuzzetta, Giorgio; Vairo, Francesco; Mammone, Alessia; Lanini, Simone; Poletti, Piero; Manica, Mattia; Rosa, Roberto; Caputo, Beniamino; Solimini, Angelo; Torre, Alessandra Della; Scognamiglio, Paola; Zumla, Alimuddin; Ippolito, Giuseppe; Merler, StefanoGuzzetta, G.; Vairo, F.; Mammone, A.; Lanini, S.; Poletti, P.; Manica, M.; Rosa, R.; Caputo, B.; Solimini, A.; Torre, A.D.; Scognamiglio, P.; Zumla, A.; Ippolito, G.; Merler, S
Spatial modes for transmission of chikungunya virus during a large chikungunya outbreak in Italy. A modeling analysis
Background
The spatial spread of many mosquito-borne diseases occurs by focal spread at the scale of a few hundred meters and over longer distances due to human mobility. The relative contributions of different spatial scales for transmission of chikungunya virus require definition to improve outbreak vector control recommendations.
Methods
We analyzed data from a large chikungunya outbreak mediated by the mosquito Aedes albopictus in the Lazio region, Italy, consisting of 414 reported human cases between June and November 2017. Using dates of symptom onset, geographic coordinates of residence, and information from epidemiological questionnaires, we reconstructed transmission chains related to that outbreak.
Results
Focal spread (within 1 km) accounted for 54.9% of all cases, 15.8% were transmitted at a local scale (1–15 km) and the remaining 29.3% were exported from the main areas of chikungunya circulation in Lazio to longer distances such as Rome and other geographical areas. Seventy percent of focal infections (corresponding to 38% of the total 414 cases) were transmitted within a distance of 200 m (the buffer distance adopted by the national guidelines for insecticide spraying). Two main epidemic clusters were identified, with a radius expanding at a rate of 300–600 m per month. The majority of exported cases resulted in either sporadic or no further transmission in the region.
Conclusions
Evidence suggest that human mobility contributes to seeding a relevant number of secondary cases and new foci of transmission over several kilometers. Reactive vector control based on current guidelines might allow a significant number of secondary clusters in untreated areas, especially if the outbreak is not detected early. Existing policies and guidelines for control during outbreaks should recommend the prioritization of preventive measures in neighboring territories with known mobility flows to the main areas of transmission
Concentration analysis and cocompactness
Loss of compactness that occurs in may significant PDE settings can be
expressed in a well-structured form of profile decomposition for sequences.
Profile decompositions are formulated in relation to a triplet , where
and are Banach spaces, , and is, typically, a
set of surjective isometries on both and . A profile decomposition is a
representation of a bounded sequence in as a sum of elementary
concentrations of the form , , , and a remainder that
vanishes in . A necessary requirement for is, therefore, that any
sequence in that develops no -concentrations has a subsequence
convergent in the norm of . An imbedding with this
property is called -cocompact, a property weaker than, but related to,
compactness. We survey known cocompact imbeddings and their role in profile
decompositions
EO-ALERT: A Novel Architecture for the Next Generation of Earth Observation Satellites Supporting Rapid Civil Alerts
The EO-ALERT project proposes the definition and development of the next-generation Earth Observation (EO) data processing chain, based on a novel flight segment architecture that moves opti-mised key EO data processing elements from the ground segment to on-board the satellite, with the aim of delivering EO products to the end user with very low latency. EO-ALERT achieves, globally, latencies below five minutes for EO products delivery, and below 1 minute in some scenarios. The proposed archi-tecture combines innovations in the on-board elements of the data chain and the communications, namely: on-board reconfigurable data handling, on-board image generation and processing for the generation of alerts (EO products) using Artificial Intelligence (AI), on-board AI-based data compression and encryption, high-speed on-board avionics, and reconfigurable high data rate communication links to ground, including a separate chain for alerts with minimum latency and global coverage. This paper pre-sents the proposed architecture, its performance and hardware, considering two different user scenarios: ship detection and extreme weather nowcasting. The results show that, when implemented using COTS components and available communication links, the proposed architecture can deliver alerts to ground with latency below five minutes, for both SAR and Optical missions, demonstrating the viability of the EO-ALERT concept
EO-ALERT: A Novel Architecture for the Next Generation of Earth Observation Satellites Supporting Rapid Civil Alerts
Satellite Earth Observation (EO) data is ubiquitously used in many applications, providing basic services to
society, such as environment monitoring, emergency management and civilian security. Due to the increasing request
of EO products by the market, the classical EO data chain generates a severe bottleneck problem, further exacerbated
in constellations. A huge amount of EO raw data generated on-board the satellite must be transferred to ground,
slowing down the EO product availability, increasing latency, and hampering the growth of applications in
accordance with the increased user demand.
This paper provides an overview of the results achieved by the EO-ALERT project (http://eo-alert-h2020.eu/), an
H2020 European Union research activity led by DEIMOS Space. EO-ALERT proposes the definition and
development of the next-generation EO data processing chain, based on a novel flight segment architecture that
moves optimised key EO data processing elements from the ground segment to on-board the satellite, with the aim of
delivering the EO products to the end user with very low latency (quasi-real-time). EO-ALERT achieves, globally,
latencies below five minutes for EO products delivery, reaching latencies below 1 minute in some scenarios.
The proposed architecture solves the above challenges through a combination of innovations in the on-board
elements of the data chain and the communications. Namely, the architecture introduces innovative technological
solutions, including on-board reconfigurable data handling, on-board image generation and processing for the
generation of alerts (EO products) using Artificial Intelligence (AI), on-board data compression and encryption using
AI, high-speed on-board avionics, and reconfigurable high data rate communication links to ground, including a
separate chain for alerts with minimum latency and global coverage.
The paper presents the proposed architecture, its performance and hardware, considering two different user
scenarios; ship detection and extreme weather observation/nowcasting. The results show that, when implemented
using COTS components and available communication links, the proposed architecture can deliver alerts to ground
with latency lower than five minutes, for both SAR and Optical missions, demonstrating the viability of the EOALERT
concept and architecture. The paper also discusses the implementation on an avionics test bench for
testing the architecture with real EO data, with the aim of demonstrating that it can meet the requirements of the
considered scenarios in terms of detection performance and provides technologies at a high TRL (4-5). When
proven, this will open unprecedented opportunities for the exploitation of civil EO products, especially in latency
sensitive scenarios, such as disaster management
A Novel Satellite Architecture for the Next Generation of Earth Observation Satellites Supporting Rapid Alerts
The EO-ALERT European Commission H2020 project proposes the definition, development, and verification and validation through ground hardware testing, of a next-generation Earth Observation (EO) data processing chain. The proposed data processing chain is based on a novel flight segment architecture that moves EO data processing elements traditionally executed in the ground segment to on-board the satellite, with the aim of delivering EO products to the end user with very low latency. EO-ALERT achieves, globally, latencies below five minutes for EO products delivery, and below one minute in realistic scenarios.
The proposed EO-ALERT architecture is enabled by on-board processing, recent improvements in processing hardware using Commercial Off-The-Shelf (COTS) components, and persistent space-to-ground communications links. EO-ALERT combines innovations in the on-board elements of the data chain and the communications, namely: on-board reconfigurable data handling, on-board image generation and processing for the generation of alerts (EO products) using Machine Learning (ML) and Artificial Intelligence (AI), on-board AI-based data compression and encryption, high-speed on-board avionics, and reconfigurable high data rate communication links to ground, including a separate chain for alerts with minimum latency and global coverage.
This paper presents the proposed architecture, its hardware realization for the ground testing in a representative environment and its performance. The architecture’s performance is evaluated considering two different user scenarios where very low latency (almost-real-time) EO product delivery is required: ship detection and extreme weather monitoring/nowcasting. The hardware testing results show that, when implemented using COTS components and available communication links, the proposed architecture can deliver alerts to the end user with a latency below five minutes, for both SAR and Optical missions, demonstrating the viability of the EO-ALERT architecture. In particular, in several test scenarios, for both the TerraSAR-X SAR and DEIMOS-2 Optical Very High Resolution (VHR) missions, hardware testing of the proposed architecture has shown it can deliver EO products and alerts to the end user globally, with latency lower than one-point-five minutes
- …