111 research outputs found
MRI Discriminates Thrombus Composition and ST Resolution after Percutaneous Coronary Intervention in Patients with ST-Elevation Myocardial Infarction
Histological composition of material obtained by thrombus aspiration during percutaneous coronary intervention (PCI) in patients with ST-segment elevation acute myocardial infarction (STEMI) is highly variable. We aimed to characterize this material using magnetic resonance imaging (MRI) and to correlate MRI findings with the success of PCI in terms of ST-segment resolution. Thrombus aspiration during primary or rescue PCI was attempted in 100 consecutive STEMI patients, of whom enough material for MRI was obtained in 59. MR images were obtained at 9.4T and T1 and T2 values were measured. Patients with (n = 31) and without (n = 28) adequate ST resolution 120 min after PCI (≥70% of pre-PCI value) had similar baseline characteristics except for a higher prevalence of diabetes mellitus in the latter (10 vs. 43%, p = 0.003). T1 values were similar in both groups (1248±112 vs. 1307±85 ms, respectively, p = 0.7). T2 values averaged 31.2±10.3 and 36.6±12.2 ms; in thrombus from patients with and without adequate ST resolution (p = 0.09). After adjusting for diabetes and other baseline characteristics, lower T2 values were significantly associated with inadequate ST resolution (odds ratio for 1 ms increase 1.08, CI 95% 1.01–1.16, p = 0.027). Histology classified thrombus in 3 groups: coagulated blood (n = 38), fibrin rich (n = 9) and lipid-rich (n = 3). Thrombi composed mostly of coagulated blood were characterized as being of short (n = 10), intermediate (n = 15) or long evolution (n = 13), T2 values being 34.0±13.2, 31.9±8.3 and 31.5±7.9 ms respectively (p = NS). In this subgroup, T2 was significantly higher in specimens from patients with inadequate perfusion (35.9±10.3 versus 28.6±6.7 ms, p = 0.02). This can be of clinical interest as it provides information on the probability of adequate ST resolution, a surrogate for effective myocardial reperfusion
Fish passage ladders from Canoas Complex - Paranapanema River: evaluation of genetic structure maintenance of Salminus brasiliensis (Teleostei: Characiformes)
Molecular MRI of Inflammation in Atherosclerosis
Inflammatory activity in atherosclerotic plaque is a risk factor for plaque rupture and atherothrombosis and may direct interventional therapy. Inflammatory activity can be evaluated at the (sub)cellular level using in vivo molecular MRI. This paper reviews recent progress in contrast-enhanced molecular MRI to visualize atherosclerotic plaque inflammation. Various MRI contrast agents, among others ultra-small particles of iron oxide, low-molecular-weight Gd-chelates, micelles, liposomes, and perfluorocarbon emulsions, have been used for in vivo visualization of various inflammation-related targets, such as macrophages, oxidized LDL, endothelial cell expression, plaque neovasculature, MMPs, apoptosis, and activated platelets/thrombus. An enzyme-activatable magnetic resonance contrast agent has been developed to study myeloperoxidase activity in inflamed plaques. Agents creating contrast based on the chemical exchange saturation transfer mechanism were used for thrombus imaging. Transfer of these molecular MRI techniques to the clinic will critically depend on the safety profiles of these newly developed magnetic resonance contrast agents
Quantitative cardiovascular magnetic resonance for molecular imaging
Cardiovascular magnetic resonance (CMR) molecular imaging aims to identify and map the expression of important biomarkers on a cellular scale utilizing contrast agents that are specifically targeted to the biochemical signatures of disease and are capable of generating sufficient image contrast. In some cases, the contrast agents may be designed to carry a drug payload or to be sensitive to important physiological factors, such as pH, temperature or oxygenation. In this review, examples will be presented that utilize a number of different molecular imaging quantification techniques, including measuring signal changes, calculating the area of contrast enhancement, mapping relaxation time changes or direct detection of contrast agents through multi-nuclear imaging or spectroscopy. The clinical application of CMR molecular imaging could offer far reaching benefits to patient populations, including early detection of therapeutic response, localizing ruptured atherosclerotic plaques, stratifying patients based on biochemical disease markers, tissue-specific drug delivery, confirmation and quantification of end-organ drug uptake, and noninvasive monitoring of disease recurrence. Eventually, such agents may play a leading role in reducing the human burden of cardiovascular disease, by providing early diagnosis, noninvasive monitoring and effective therapy with reduced side effects
Acetyl-hydroxy-fulvene: A new ligand for chromium-catalyzed polymerization of ethylene at room temperature. Crystal structures of the ligands and chromium complex
International audienceIn the field of transition metal catalysts for olefin polymerization, the discovery of new chelating ligands has attracted significant interest. This paper reports on the polymerization of ethylene with new chromium based catalysts containing an acetyl-hydroxy-fulvene ligand. A parallel method was applied to screen eleven metal salts versus two different functionalized fulvene ligands. A direct visual analysis showed solid PE formation only in vials containing a chromium salt after 1 h of polymerization at 35 °C and 15 bar. This preliminary screening was followed by optimization studies to obtain high activities (up to 5 tPE/(mol·h)). ORTEP structures of the corresponding ligands and of the best catalysts were reporte
The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products
Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, is expected to be launched in late 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, in order to gain new insights into the Earth system by improving our understanding of the Earth's interior and environment. In order to derive advanced models of the geomagnetic field (and other higher-level data products) it is necessary to take explicit advantage of the constellation aspect of Swarm. The Swarm SCARF (Satellite Constellation Application and Research Facility) has been established with the goal of deriving Level-2 products by combination of data from the three satellites, and of the various instruments. The present paper describes the Swarm input data products (Level-1b and auxiliary data) used by SCARF, the various processing chains of SCARF, and the Level-2 output data products determined by SCARF
- …
