2,025 research outputs found
Bottom-up retinotopic organization supports top-down mental imagery
Finding a path between locations is a routine task in daily life. Mental navigation is often used to plan a route to a destination that is not visible from the current location. We first used functional magnetic resonance imaging (fMRI) and surface-based averaging methods to find high-level brain regions involved in imagined navigation between locations in a building very familiar to each participant. This revealed a mental navigation network that includes the precuneus, retrosplenial cortex (RSC), parahippocampal place area (PPA), occipital place area (OPA), supplementary motor area (SMA), premotor cortex, and areas along the medial and anterior intraparietal sulcus. We then visualized retinotopic maps in the entire cortex using wide-field, natural scene stimuli in a separate set of fMRI experiments. This revealed five distinct visual streams or ‘fingers’ that extend anteriorly into middle temporal, superior parietal, medial parietal, retrosplenial and ventral occipitotemporal cortex. By using spherical morphing to overlap these two data sets, we showed that the mental navigation network primarily occupies areas that also contain retinotopic maps. Specifically, scene-selective regions RSC, PPA and OPA have a common emphasis on the far periphery of the upper visual field. These results suggest that bottom-up retinotopic organization may help to efficiently encode scene and location information in an eye-centered reference frame for top-down, internally generated mental navigation. This study pushes the border of visual cortex further anterior than was initially expected
On aberration in gravitational lensing
It is known that a relative translational motion between the deflector and
the observer affects gravitational lensing. In this paper, a lens equation is
obtained to describe such effects on actual lensing observables. Results can be
easily interpreted in terms of aberration of light-rays. Both radial and
transverse motions with relativistic velocities are considered. The lens
equation is derived by first considering geodesic motion of photons in the
rest-frame Schwarzschild spacetime of the lens, and, then, light-ray detection
in the moving observer's frame. Due to the transverse motion images are
displaced and distorted in the observer's celestial sphere, whereas the radial
velocity along the line of sight causes an effective re-scaling of the lens
mass. The Einstein ring is distorted to an ellipse whereas the caustics in the
source plane are still point-like. Either for null transverse motion or up to
linear order in velocities, the critical curve is still a circle with its
radius corrected by a factor (1+z_d) with respect to the static case, z_d being
the relativistic Doppler shift of the deflector. From the observational point
of view, the orbital motion of the Earth can cause potentially observable
corrections of the order of the microarcsec in lensing towards the
super-massive black hole at the Galactic center. On a cosmological scale,
tangential peculiar velocities of cluster of galaxies bring about a typical
flexion in images of background galaxies in the weak lensing regime but future
measurements seem to be too much challenging.Comment: 8 pages, 2 figures, in press on PR
SZ contribution to characterize the shape of galaxy cluster haloes
We present the on-going activity to characterize the geometrical properties of the gas and dark matter haloes using multi-wavelength observations of galaxy clusters. The role of the SZ signal in describing the gas distribution is discussed for the pilot case of the CLASH object MACS J1206.2-0847
On the evolution of the entropy and pressure profiles in X-ray luminous galaxy clusters at z > 0.4
Galaxy clusters are the most recent products of hierarchical accretion over
cosmological scales. The gas accreted from the cosmic field is thermalized
inside the cluster halo. Gas entropy and pressure are expected to have a
self-similar behaviour with their radial distribution following a power law and
a generalized Navarro-Frenk-White profile, respectively. This has been shown
also in many different hydrodynamical simulations. We derive the
spatially-resolved thermodynamical properties of 47 X-ray galaxy clusters
observed with Chandra in the redshift range 0.4 < z < 1.2, the largest sample
investigated so far in this redshift range with X-rays spectroscopy, with a
particular care in reconstructing the gas entropy and pressure radial profiles.
We search for deviation from the self-similar behaviour and look for possible
evolution with redshift. The entropy and pressure profiles lie very close to
the baseline prediction from gravitational structure formation. We show that
these profiles deviate from the baseline prediction as function of redshift, in
particular at z > 0.75, where, in the central regions, we observe higher values
of the entropy (by a factor of 2.2) and systematically lower estimates (by a
factor of 2.5) of the pressure. The effective polytropic index, which retains
informations about the thermal distribution of the gas, shows a slight linear
positive evolution with the redshift and the concentration of the dark matter
distribution. A prevalence of non-cool-core, disturbed systems, as we observe
at higher redshifts, can explain such behaviours.Comment: 14 pages, 18 figures, accepted for publication by A&
The weakly perturbed Schwarzschild lens in the strong deflection limit
We investigate the strong deflection limit of gravitational lensing by a
Schwarzschild black hole embedded in an external gravitational field. The study
of this model, analogous to the Chang & Refsdal lens in the weak deflection
limit, is important to evaluate the gravitational perturbations on the
relativistic images that appear in proximity of supermassive black holes hosted
in galactic centers. By a simple dimensional argument, we prove that the tidal
effect on the light ray propagation mainly occurs in the weak field region far
away from the black hole and that the external perturbation can be treated as a
weak field quadrupole term. We provide a description of relativistic critical
curves and caustics and discuss the inversion of the lens mapping. Relativistic
caustics are shifted and acquire a finite diamond shape. Sources inside the
caustics produce four sequences of relativistic images. On the other hand,
retro-lensing caustics are only shifted while remaining point-like to the
lowest order.Comment: 12 pages, 1 figure
Gravitomagnetic corrections to the lensing deflection angle for spiral galaxy models
We investigate the effects of the gravitomagnetic corrections to the usual
gravitational lens quantities for a specific lensing mass distribution modelled
after spiral galaxies. An exponential disk is embedded into two different
spherical halo models where disk and haloes parameters are fixed according to
the observed mass to light ratios, galaxy magnitudes and rotation curves. The
general expressions for the lensing deflection angle are given also taking into
account the orientation of the galaxy disk plane with respect to the lens
plane. It is found that the gravitomagnetic term changes the deflection angle
by a typical amount of the order of ten microarcseconds.Comment: 7 pages, 2 figures, accepted for publication on MNRA
Mass - concentration relation and weak lensing peak counts
The statistics of peaks in weak lensing convergence maps is a promising tool
to investigate both the properties of dark matter haloes and constrain the
cosmological parameters. We study how the number of detectable peaks and its
scaling with redshift depend upon the cluster dark matter halo profiles and use
peak statistics to constrain the parameters of the mass - concentration (MC)
relation. We investigate which constraints the Euclid mission can set on the MC
coefficients also taking into account degeneracies with the cosmological
parameters. To this end, we first estimate the number of peaks and its redshift
distribution for different MC relations. We find that the steeper the mass
dependence and the larger the normalisation, the higher is the number of
detectable clusters, with the total number of peaks changing up to
depending on the MC relation. We then perform a Fisher matrix forecast of the
errors on the MC relation parameters as well as cosmological parameters. We
find that peak number counts detected by Euclid can determine the normalization
, the mass and redshift slopes and intrinsic scatter
of the MC relation to an unprecedented accuracy being
, , ,
if all cosmological parameters are assumed to
be known. Should we relax this severe assumption, constraints are degraded, but
remarkably good results can be restored setting only some of the parameters or
combining peak counts with Planck data. This precision can give insight on
competing scenarios of structure formation and evolution and on the role of
baryons in cluster assembling. Alternatively, for a fixed MC relation, future
peaks counts can perform as well as current BAO and SNeIa when combined with
Planck.Comment: 14 pages, 8 figures, accepted for publication on Astronomy &
Astrophysic
Study of the morphological diversity of the honeybees (apis mellifera l.) from the south of Europa and South America
We have studied 9 corporal characteristics in 118 samples of honey bees coming from the Iberian Peninsula, Madeira, Canary Island and Brazil. The results show that the bees originating of Brazil form a morphological group. In another group they are included those coming from the islands of Tenerife, Gran Canaria, Gomera and Hierro, all belong to the Canary Island. The third group is formed by the bees of the Iberian Peninsula and the islands of La Palma and Madeira.Hemos estudiado 9 características corporales en 118 muestras de abejas obreras procedentes de la Península Ibérica, Madeira, Archipiélago Canario y Brasil. Los resultados muestran que las abejas oriundas de Brasil forman un grupo morfológico propio. En otro grupo se incluyen las procedentes de las islas de Tenerife, Gran Canaria, Gomera y Hierro, todas pertenecen al Archipiélago Canario. El tercer grupo está formado por las abejas de la Península Ibérica y las islas de La Palma y Madeira
Development of Bursaphelenchus xylophilus-specific microsatellite markers to assess the genetic diversity of populations from European forests.
The pinewood nematode (PWN), Bursaphelenchus xylophilus (Steiner & Buhrer, 1934), Nickle (Nematoda: Aphelenchoididae) is the causal agent of the pine wilt disease and is currently considered as one of the most important pests and pathogens in the world. Its introduction and spread in new forest ecosystems have considerable consequences both economically and environmentally. Therefore, it is of crucial importance to identify its invasion routes, to determine the origin of new outbreaks and to understand the invasion process of this species to prevent further dissemination of the disease in Europe. In order to address these questions using population genetic approaches, we have been developing a set of PWN-specific microsatellite markers, usable in routine conditions at the individual level, thanks to multiplex PCR coupled with a fast DNA extraction method. Microsatellites were isolated from a genomic library using a procedure combining DNA enrichment and high throughput pyrosequencing as recently described by Malausa et al. (2011). Primers were designed for 71 and 23 perfect and compound microsatellites, respectively, 26 of which were experimentally validated so far. Among them, 18 markers exhibited polymorphism after several rounds of amplification tests. Preliminary results on a set of 190 nematodes from 13 populations indicate a very low level of polymorphism in PWN populations from Portugal and Madeira Island, compared to populations from the native area in North America. The genotyping of a wide collection of samples from Europe, Asia and North America is currently underway in the laboratory. Assessing the genetic diversity of populations indeed constitutes the cornerstone to determine whether the European invasive PWN populations are the result of a single or several independent events of introduction
Eye position modulates retinotopic responses in early visual areas: a bias for the straight-ahead direction
Even though the eyes constantly change position, the location of a stimulus can be accurately represented by a population of neurons with retinotopic receptive fields modulated by eye position gain fields. Recent electrophysiological studies, however, indicate that eye position gain fields may serve an additional function since they have a non-uniform spatial distribution that increases the neural response to stimuli in the straight-ahead direction. We used functional magnetic resonance imaging and a wide-field stimulus display to determine whether gaze modulations in early human visual cortex enhance the blood-oxygenation-level dependent (BOLD) response to stimuli that are straight-ahead. Subjects viewed rotating polar angle wedge stimuli centered straight-ahead or vertically displaced by ±20° eccentricity. Gaze position did not affect the topography of polar phase-angle maps, confirming that coding was retinotopic, but did affect the amplitude of the BOLD response, consistent with a gain field. In agreement with recent electrophysiological studies, BOLD responses in V1 and V2 to a wedge stimulus at a fixed retinal locus decreased when the wedge location in head-centered coordinates was farther from the straight-ahead direction. We conclude that stimulus-evoked BOLD signals are modulated by a systematic, non-uniform distribution of eye-position gain fields
- …