3,594 research outputs found
SESAME, a third generation synchrotron light source for the Middle East region
Developed under the auspices of UNESCO, SESAME is being established as an autonomous international research centre in the Middle East/Mediterranean region. It will have as its centrepiece a 2.5 GeV third Generation synchrotron light source with 13 straight sections for insertion devices and an emittance of 26.6 nm-rad. It will provide intense radiation from the IR to hard X-rays to a community that is expected to exceed 1000 users a few years after the start of operation in 2008
Relativistic Particle Acceleration in a Folded Current Sheet
Two-dimensional particle simulations of a relativistic Harris current sheet
of pair plasmashave demonstrated that the system is unstable to the
relativistic drift kink instability (RDKI) and that a new kind of acceleration
process takes place in the deformed current sheet. This process contributes to
the generation of non-thermal particles and contributes to the fast magnetic
dissipation in the current sheet structure. The acceleration mechanism and a
brief comparison with relativistic magnetic reconnection are presented.Comment: 11 preprint pages, including 3 .eps figure
Particle Acceleration and Magnetic Dissipation in Relativistic Current Sheet of Pair Plasmas
We study linear and nonlinear development of relativistic and
ultrarelativistic current sheets of pair plasmas with antiparallel magnetic
fields. Two types of two-dimensional problems are investigated by
particle-in-cell simulations. First, we present the development of relativistic
magnetic reconnection, whose outflow speed is an order of the light speed c. It
is demonstrated that particles are strongly accelerated in and around the
reconnection region, and that most of magnetic energy is converted into
"nonthermal" part of plasma kinetic energy. Second, we present another
two-dimensional problem of a current sheet in a cross-field plane. In this
case, the relativistic drift kink instability (RDKI) occurs. Particle
acceleration also takes place, but the RDKI fast dissipates the magnetic energy
into plasma heat. We discuss the mechanism of particle acceleration and the
theory of the RDKI in detail. It is important that properties of these two
processes are similar in the relativistic regime of T > mc^2, as long as we
consider the kinetics. Comparison of the two processes indicates that magnetic
dissipation by the RDKI is more favorable process in the relativistic current
sheet. Therefore the striped pulsar wind scenario should be reconsidered by the
RDKI.Comment: To appear in ApJ vol. 670; 60 pages, 27 figures; References and typos
are fixe
Particle Acceleration in three dimensional Reconnection Regions: A New Test Particle Approach
Magnetic Reconnection is an efficient and fast acceleration mechanism by
means of direct electric field acceleration parallel to the magnetic field.
Thus, acceleration of particles in reconnection regions is a very important
topic in plasma astrophysics. This paper shows that the conventional analytical
models and numerical test particle investigations can be misleading concerning
the energy distribution of the accelerated particles, since they oversimplify
the electric field structure by the assumption that the field is homogeneous.
These investigations of the acceleration of charged test particles are extended
by considering three-dimensional field configurations characterized by
localized field-aligned electric fields. Moreover, effects of radiative losses
are discussed. The comparison between homogeneous and inhomogeneous electric
field acceleration in reconnection regions shows dramatic differences
concerning both, the maximum particle energy and the form of the energy
distribution.Comment: 11 pages, 21 figure
Dissipation in Poynting-flux Dominated Flows: the Sigma-Problem of the Crab Pulsar Wind
Flows in which energy is transported predominantly as Poynting flux are
thought to occur in pulsars, gamma-ray bursts and relativistic jets from
compact objects. The fluctuating component of the magnetic field in such a flow
can in principle be dissipated by magnetic reconnection, and used to accelerate
the flow. We investigate how rapidly this transition can take place, by
implementing into a global MHD model, that uses a thermodynamic description of
the plasma, explicit, physically motivated prescriptions for the dissipation
rate: a lower limit on this rate is given by limiting the maximum drift speed
of the current carriers to that of light, an upper limit follows from demanding
that the dissipation zone expand only subsonically in the comoving frame and a
further prescription is obtained by assuming that the expansion speed is
limited by the growth rate of the relativistic tearing mode. In each case,
solutions are presented which give the Lorentz factor of a spherical wind
containing a transverse, oscillating magnetic field component as a function of
radius. In the case of the Crab pulsar, we find that the Poynting flux can be
dissipated before the wind reaches the inner edge of the Nebula if the pulsar
emits electron positron pairs at a rate >1.E40 per second, thus providing a
possible solution to the sigma-problem.Comment: Accepted for publication in Ap
Simulation studies of CZT Detectors as Gamma-Ray Calorimeter
We describe the results of detailed 3-D Monte Carlo simulations of a "CZT
calorimeter" that can be used to detect photons in the keV to several MeV
range. Several astrophysics applications require the detection of photons in
the energy range of keV up to several MeV with good position and energy
resolution. For certain applications Cadmium Zinc Telluride (CZT) detectors
might be the detector option of choice. Up to now, CZT detectors have mainly
been used in the energy range between a few keV to ~1 MeV, we describe the
results of detailed 3-D Monte Carlo simulations of a "CZT calorimeter" that can
be used to detect photons in the keV to several MeV range. The main objective
of these studies is to evaluate the feasibility of CZT calorimeters, to study
their performance and detect and understand performance limiting factors. Such
a calorimeter consists of many layers of closely packed pixellated CZT detector
units. Our simulations of single detector units reproduce experimental results,
indicating that our simulations capture the main factors that limit the
performance of a detector unit. Overall the conclusion of our simulation study
is that between 1 cm and 1.5 cm thick detector units can be used to build a
calorimeter with good performance over the energy range from ~20 keV to ~10
MeV.Comment: Accepted for publication in Astroparticle Physics, 20 pages, 14
figure
Position-sensitive Si pad detectors for electron emission channeling experiments
Position-sensitive detector systems, initially developed for the detection of X-rays, have been adapted for their use in electron emission channeling experiments. Each detection system consists of a 30.8x30.8 mm 22x22 -pad Si detector, either of 0.3 mm, 0.5 mm or 1 mm thickness, four 128channel preamplifier chips, a backplane trigger circuit, a sampling analog to digital converter, a digital signal processor, and a personal computer for data display and storage. The operational principle of these detection systems is described, and characteristic features such as energy and position resolution and maximum count rate, which have been determined from tests with conversion electrons and -particles in the energy range 40--600 keV, are presented
- …