241 research outputs found

    Stochastic Preconditioning for Diagonally Dominant Matrices

    Full text link

    A fast and retargetable framework for logic-IP-internal electromigration assessment comprehending advanced waveform effects

    Get PDF
    A new methodology for system-on-chip-level logic-IP-internal electromigration verification is presented in this paper, which significantly improves accuracy by comprehending the impact of the parasitic RC loading and voltage-dependent pin capacitance in the library model. It additionally provides an on-the-fly retargeting capability for reliability constraints by allowing arbitrary specifications of lifetimes, temperatures, voltages, and failure rates, as well as interoperability of the IPs across foundries. The characterization part of the methodology is expedited through the intelligent IP-response modeling. The ultimate benefit of the proposed approach is demonstrated on a 28-nm design by providing an on-the-fly specification of retargeted reliability constraints. The results show a high correlation with SPICE and were obtained with an order of magnitude reduction in the verification runtime.Peer ReviewedPostprint (author's final draft

    A general model for performance optimization of sequential systems

    Get PDF
    Retiming, c-slow retiming and recycling are different transformations for the performance optimization of sequential circuits. For retiming and c-slow retiming, different models that provide exact solutions have already been proposed. An exact model for recycling was yet unknown. This paper presents a general formulation that covers the combination of the three schemes for performance optimization. It provides an exact model based on integer linear programming that resorts to the structural theory of marked graphs. A set of experiments has been designed to show the benefits in performance obtained by combining retiming and recycling. The results also show the applicability of the method in large circuits.Peer ReviewedPostprint (published version

    Performance Driven Global Routing Through Gradual Refinement

    Get PDF
    We propose a heuristic for VLSI interconnect global routing that can optimize routing congestion, delay and number of bends, which are often competing objectives. Routing flexibilities under timing constraints are obtained and exploited to reduce congestion subject to timing constraints. The wire routes are determined through gradual refinement according to probabilistic estimation on congestions so that the congestion is minimized while the number of bends on wires is limited. The experiments on both random generated circuits and benchmark circuits confirm the effectiveness of this method

    ECO-CHIP: Estimation of Carbon Footprint of Chiplet-based Architectures for Sustainable VLSI

    Full text link
    Decades of progress in energy-efficient and low-power design have successfully reduced the operational carbon footprint in the semiconductor industry. However, this has led to an increase in embodied emissions, encompassing carbon emissions arising from design, manufacturing, packaging, and other infrastructural activities. While existing research has developed tools to analyze embodied carbon at the computer architecture level for traditional monolithic systems, these tools do not apply to near-mainstream heterogeneous integration (HI) technologies. HI systems offer significant potential for sustainable computing by minimizing carbon emissions through two key strategies: ``reducing" computation by reusing pre-designed chiplet IP blocks and adopting hierarchical approaches to system design. The reuse of chiplets across multiple designs, even spanning multiple generations of integrated circuits (ICs), can substantially reduce embodied carbon emissions throughout the operational lifespan. This paper introduces a carbon analysis tool specifically designed to assess the potential of HI systems in facilitating greener VLSI system design and manufacturing approaches. The tool takes into account scaling, chiplet and packaging yields, design complexity, and even carbon overheads associated with advanced packaging techniques employed in heterogeneous systems. Experimental results demonstrate that HI can achieve a reduction of embodied carbon emissions up to 70\% compared to traditional large monolithic systems. These findings suggest that HI can pave the way for sustainable computing practices, contributing to a more environmentally conscious semiconductor industry.Comment: Under review at HPCA2

    Variation-Aware Variable Latency Design

    Full text link
    • …
    corecore