24,547 research outputs found
Recommended from our members
A "water shell" model for the dielectric properties of hydrated silica-filled epoxy nano-composites
The electrical properties of epoxy resin have been studied as a function of hydration. The epoxy was studied in an un-filled state, filled with 40 µm SiO2 particles, and filled with 50 nm SiO2 particles. The relative humidity was controlled by saturated salt solutions at ambient temperatures from 298-353 K. Measurements were made using dielectric spectroscopy over the frequency range 10-3-105 Hz. The hydration isotherm (i.e. the mass uptake of water) was established by measuring the mass as a function of relative humidity (RH). It was found that the nanocomposites absorb up to 60% more water than the unfilled and micro-filled epoxies. Dielectric spectroscopy shows different conduction and quasi-DC behaviours at very low frequencies (<10-2 Hz) with activation energies dependent on the hydration and temperature. These observations have led to the development of a “water shell” model to explain this phenomenon
Recommended from our members
The effect of water absorption on the dielectric properties of epoxy nanocomposites
In this research, the influence of water absorption on the dielectric properties of epoxy resin and epoxy micro-composites and nano-composites filled with silica has been studied. Nanocomposites were found to absorb significantly more water than unfilled epoxy. However, the microcomposite absorbed less water than unfilled epoxy: corresponding to reduced proportion of the epoxy in this composite. The glass transition temperatures of all the samples were measured by both differential scanning calorimetry and dielectric spectroscopy. The Tg decreased as the water absorption increased and, in all cases, corresponded to a drop of approximately 20K as the humidity was increased from 0% to 100%. This implied that for all the samples, the amount of water in the resin component of the composites was almost identical. It was concluded that the extra water found in the nanocomposites was located around the surface of the nanoparticles. This was confirmed by measuring the water uptake, and the swelling and density change, as a function of humidity as water was absorbed. The water shell model, originally proposed by Lewis and developed by Tanaka, has been further developed to explain low frequency dielectric spectroscopy results in which percolation of charge carriers through overlapping water shells was shown to occur. This has been discussed in terms of a percolation model. At 100% relative humidity, water is believed to surround the nanoparticles to a depth of approximately 5 monolayers. A second layer of water is proposed that is dispersed by sufficiently concentrated to be conductive; this may extend for approximately 25 nm. If all the water had existed in a single layer surrounding a nanoparticle, this layer would have been approximately 3 to 4 nm thick at 100%. This "characteristic thickness" of water surrounding a given size of nanoparticle appeared to be independent of the concentration of nanoparticles but approximately proportional to water uptake. Filler particles that have surfaces that are functionalized to be hydrophobic considerably reduce the amount of water absorbed in nanocomposites under the same conditions of humidity. Comments are made on the possible effect on electrical aging
Prediction of unsteady aerodynamic loadings caused by leading edge and trailing edge control surface motions in subsonic compressible flow: Computer program description
A digital computer program has been developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge or trailing edge controls based on the subsonic kernel function approach. The pressure singularities at hinge line and side edges have been extracted analytically as a preliminary step to solving the integral equation by collocation. The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accommodated
On giant piezoresistance effects in silicon nanowires and microwires
The giant piezoresistance (PZR) previously reported in silicon nanowires is
experimentally investigated in a large number of surface depleted silicon nano-
and micro-structures. The resistance is shown to vary strongly with time due to
electron and hole trapping at the sample surfaces. Importantly, this time
varying resistance manifests itself as an apparent giant PZR identical to that
reported elsewhere. By modulating the applied stress in time, the true PZR of
the structures is found to be comparable with that of bulk silicon
The Teaching of Procedure Across Common Law Systems
What difference does the teaching of procedure make to legal education, legal scholarship, the legal profession, and civil justice reform? This first of four articles on the teaching of procedure canvasses the landscape of current approaches to the teaching of procedure in four legal systems—the United States, Canada, Australia, and England and Wales—surveying the place of procedure in the law school curriculum and in professional training, the kinds of subjects that “procedure” encompasses, and the various ways in which procedure is learned. Little sustained reflection has been carried out as to the import and impact of this longstanding law school subject. Through a comparative approach, this series of articles explores what difference the approach a particular jurisdiction has chosen to adopt makes for legal education, legal scholarship, the practice of law and the profession, and to civil justice reform in our legal system.
En quoi l’enseignement de la procédure civile modifi e-t-il les études juridiques, la recherche juridique, la profession d’avocat et la réforme de la justice civile? Ce premier de quatre articles sur l’enseignement de la procédure dresse le tableau de l’approche actuellement utilisée dans quatre systèmes juridiques – aux États-Unis, au Canada, en Australie, en Angleterre et au Pays de Galles – et se penche sur la place qu’occupe la procédure dans le programme des facultés de droit et dans la formation professionnelle, les matières qui constituent la « procédure » et les diverses façons d’apprendre la procédure. L’importance et l’incidence de cette matière traditionnelle des facultés de droit ont fait jusqu’ici l’objet de fort peu de réfl exion en profondeur. Par le biais d’une approche comparative, cette série d’articles examine en quoi l’approche adoptée dans ces pays modifi e chez nous les études et la recherche juridiques, la pratique du droit, la profession d’avocat et la réforme du système de justice civile
Reduction of computer usage costs in predicting unsteady aerodynamic loadings caused by control surface motions: Analysis and results
Results of theoretical and numerical investigations conducted to develop economical computing procedures were applied to an existing computer program that predicts unsteady aerodynamic loadings caused by leading and trailing edge control surface motions in subsonic compressible flow. Large reductions in computing costs were achieved by removing the spanwise singularity of the downwash integrand and evaluating its effect separately in closed form. Additional reductions were obtained by modifying the incremental pressure term that account for downwash singularities at control surface edges. Accuracy of theoretical predictions of unsteady loading at high reduced frequencies was increased by applying new pressure expressions that exactly satisified the high frequency boundary conditions of an oscillating control surface. Comparative computer result indicated that the revised procedures provide more accurate predictions of unsteady loadings as well as providing reduction of 50 to 80 percent in computer usage costs
Control of macrophytes by grass carp (ctenopharyngodon idella) in a Waikato drain, New Zealand
Hornwort (Ceratophyllum demersum L.) and other aquatic macrophytes have historically been mechanically removed from the Rangiriri drain and Churchill East drain to maintain drain efficiency. As an alternative control method for the high plant biomass that accumulates at the end of summer, the effect of stocking diploid grass carp (Ctenopharyngodon idella L.) on the aquatic vegetation was evaluated in these Waikato drainage systems. At the start of the trial, both drains had a low diversity of aquatic macrophytes, and of the nine species (including the emergents), seven were exotic. Two months after grass carp were released to Churchill East drain (the treated drain) the four submerged and floating macrophyte species became scarce in the main drain. Over the same period, these species increased in biomass in Rangiriri drain (the untreated drain), where hornwort became dense and surface-reaching and remained so for the duration of the trial. However, grass carp did not control submerged vegetation in smaller side drains or the shallow, upper parts of the main drain, or the marginal sprawling species and emergent species. The cost of leasing the grass carp was similar to the cost of clearing the drains mechanically, but grass carp provided continuous weed control. However, subsequent to this trial, 62 dead grass carp were found in Churchill East drain in February 2001, and weed cover subsequently increased. This illustrates that grass carp management in New Zealand agricultural drains can be problematic due to periodic fish kills
Separation of Parallel Encoded Complex-Valued Slices (SPECS) From A Single Complex-Valued Aliased Coil Image
Purpose
Achieving a reduction in scan time with minimal inter-slice signal leakage is one of the significant obstacles in parallel MR imaging. In fMRI, multiband-imaging techniques accelerate data acquisition by simultaneously magnetizing the spatial frequency spectrum of multiple slices. The SPECS model eliminates the consequential inter-slice signal leakage from the slice unaliasing, while maintaining an optimal reduction in scan time and activation statistics in fMRI studies. Materials and Methods
When the combined k-space array is inverse Fourier reconstructed, the resulting aliased image is separated into the un-aliased slices through a least squares estimator. Without the additional spatial information from a phased array of receiver coils, slice separation in SPECS is accomplished with acquired aliased images in shifted FOV aliasing pattern, and a bootstrapping approach of incorporating reference calibration images in an orthogonal Hadamard pattern. Result
The aliased slices are effectively separated with minimal expense to the spatial and temporal resolution. Functional activation is observed in the motor cortex, as the number of aliased slices is increased, in a bilateral finger tapping fMRI experiment. Conclusion
The SPECS model incorporates calibration reference images together with coefficients of orthogonal polynomials into an un-aliasing estimator to achieve separated images, with virtually no residual artifacts and functional activation detection in separated images
- …
