232 research outputs found
Quantitative stray field imaging of a magnetic vortex core
Thin-film ferromagnetic disks present a vortex spin structure whose dynamics,
added to the small size (~10 nm) of their core, earned them intensive study.
Here we use a scanning nitrogen-vacancy (NV) center microscope to
quantitatively map the stray magnetic field above a 1 micron-diameter disk of
permalloy, unambiguously revealing the vortex core. Analysis of both
probe-to-sample distance and tip motion effects through stroboscopic
measurements, allows us to compare directly our quantitative images to
micromagnetic simulations of an ideal structure. Slight perturbations with
respect to the perfect vortex structure are clearly detected either due to an
applied in-plane magnetic field or imperfections of the magnetic structures.
This work demonstrates the potential of scanning NV microscopy to map tiny
stray field variations from nanostructures, providing a nanoscale,
non-perturbative detection of their magnetic texture.Comment: 5 pages, 4 figure
Domain wall tilting in the presence of the Dzyaloshinskii-Moriya interaction in out-of-plane magnetized magnetic nanotracks
We show that the Dzyaloshinskii-Moriya interaction (DMI) can lead to a
tilting of the domain wall (DW) surface in perpendicularly magnetized magnetic
nanotracks when DW dynamics is driven by an easy axis magnetic field or a spin
polarized current. The DW tilting affects the DW dynamics for large DMI and the
tilting relaxation time can be very large as it scales with the square of the
track width. The results are well explained by an analytical model based on a
Lagrangian approach where the DMI and the DW tilting are included. We propose a
simple way to estimate the DMI in a magnetic multilayers by measuring the
dependence of the DW tilt angle on a transverse static magnetic field. Our
results shed light on the current induced DW tilting observed recently in Co/Ni
multilayers with inversion asymmetry, and further support the presence of DMI
in these systems.Comment: 12 pages, 3 figures, 1 Supplementary Material
Domain wall structure in magnetic bilayers with perpendicular anisotropy
We study the magnetic domain wall structure in magnetic bilayers (two
ultrathin ferromagnetic layers separated by a non magnetic spacer) with
perpendicular magnetization. Combining magnetic force and ballistic electron
emission microscopies, we are able to reveal the details of the magnetic
structure of the wall with a high spatial accuracy. In these layers, we show
that the classical Bloch wall observed in single layers transforms into
superposed N\'eel walls due to the magnetic coupling between the ferromagnetic
layers. Quantitative agreement with micromagnetic calculations is achieved.Comment: Author adresses AB, SR, JM and AT: Laboratoire de Physique des
Solides, CNRS, Universit\'e Paris Sud, UMR 8502, 91405 Orsay Cedex, France ML
: Laboratoire PMTM, Institut Galil\'ee, CNRS, Universit\'e Paris-13, UPR
9001, 93430 Villetaneuse, Franc
Skyrmion morphology in ultrathin magnetic films
Nitrogen-vacancy magnetic microscopy is employed in quenching mode as a
non-invasive, high resolution tool to investigate the morphology of isolated
skyrmions in ultrathin magnetic films. The skyrmion size and shape are found to
be strongly affected by local pinning effects and magnetic field history.
Micromagnetic simulations including static disorder, based on a physical model
of grain-to-grain thickness variations, reproduce all experimental observations
and reveal the key role of disorder and magnetic history in the stabilization
of skyrmions in ultrathin magnetic films. This work opens the way to an
in-depth understanding of skyrmion dynamics in real, disordered media.Comment: 9 pages, 8 figures, including supplementary information
Nanoscale magnetic field mapping with a single spin scanning probe magnetometer
We demonstrate quantitative magnetic field mapping with nanoscale resolution,
by applying a lock-in technique on the electron spin resonance frequency of a
single nitrogen-vacancy defect placed at the apex of an atomic force microscope
tip. In addition, we report an all-optical magnetic imaging technique which is
sensitive to large off-axis magnetic fields, thus extending the operation range
of diamond-based magnetometry. Both techniques are illustrated by using a
magnetic hard disk as a test sample. Owing to the non-perturbing and
quantitative nature of the magnetic probe, this work should open up numerous
perspectives in nanomagnetism and spintronics
Universal dephasing in a chiral 1D interacting fermion system
We consider dephasing by interactions in a one-dimensional chiral fermion
system (e.g. a Quantum Hall edge state). For finite-range interactions, we
calculate the spatial decay of the Green's function at fixed energy, which sets
the contrast in a Mach-Zehnder interferometer. Using a physically transparent
semiclassical ansatz, we find a power-law decay of the coherence at high
energies and zero temperature (T=0), with a universal asymptotic exponent of 1,
independent of the interaction strength. We obtain the dephasing rate at T>0
and the fluctuation spectrum acting on an electron.Comment: 5 pages, 3 figures; minor changes, version as published
Highly asymmetric magnetic domain wall propagation due to coupling to a periodic pinning potential
Magneto-optical microscopy and magnetometry have been used to study
19 magnetization reversal in an ultrathin magnetically soft [Pt/Co]2 ferromagnetic film
20 coupled to an array of magnetically harder [Co/Pt]4 nanodots via a predominantly
21 dipolar interaction across a 3 nm Pt spacer. This interaction generates a spatially
22 periodic pinning potential for domain walls propagating through the continuous
23 magnetic film. When reversing the applied field with respect to the static nanodot
24 array magnetization orientation, strong asymmetries in the wall velocity and switching
25 fields are observed. Asymmetric switching fields mean that the hysteresis of the film is
26 characterized by a large bias field of dipolar origin which is linked to the wall velocity
27 asymmetry. This latter asymmetry, though large at low fields, vanishes at high fields
28 where the domains become round and compact. A field-polarity-controlled transition
29 from dendritic to compact faceted domain structures is also seen at low field and a
30 model is proposed to interpret the transition
- …