232 research outputs found

    Quantitative stray field imaging of a magnetic vortex core

    Get PDF
    Thin-film ferromagnetic disks present a vortex spin structure whose dynamics, added to the small size (~10 nm) of their core, earned them intensive study. Here we use a scanning nitrogen-vacancy (NV) center microscope to quantitatively map the stray magnetic field above a 1 micron-diameter disk of permalloy, unambiguously revealing the vortex core. Analysis of both probe-to-sample distance and tip motion effects through stroboscopic measurements, allows us to compare directly our quantitative images to micromagnetic simulations of an ideal structure. Slight perturbations with respect to the perfect vortex structure are clearly detected either due to an applied in-plane magnetic field or imperfections of the magnetic structures. This work demonstrates the potential of scanning NV microscopy to map tiny stray field variations from nanostructures, providing a nanoscale, non-perturbative detection of their magnetic texture.Comment: 5 pages, 4 figure

    Domain wall tilting in the presence of the Dzyaloshinskii-Moriya interaction in out-of-plane magnetized magnetic nanotracks

    Full text link
    We show that the Dzyaloshinskii-Moriya interaction (DMI) can lead to a tilting of the domain wall (DW) surface in perpendicularly magnetized magnetic nanotracks when DW dynamics is driven by an easy axis magnetic field or a spin polarized current. The DW tilting affects the DW dynamics for large DMI and the tilting relaxation time can be very large as it scales with the square of the track width. The results are well explained by an analytical model based on a Lagrangian approach where the DMI and the DW tilting are included. We propose a simple way to estimate the DMI in a magnetic multilayers by measuring the dependence of the DW tilt angle on a transverse static magnetic field. Our results shed light on the current induced DW tilting observed recently in Co/Ni multilayers with inversion asymmetry, and further support the presence of DMI in these systems.Comment: 12 pages, 3 figures, 1 Supplementary Material

    Domain wall structure in magnetic bilayers with perpendicular anisotropy

    Full text link
    We study the magnetic domain wall structure in magnetic bilayers (two ultrathin ferromagnetic layers separated by a non magnetic spacer) with perpendicular magnetization. Combining magnetic force and ballistic electron emission microscopies, we are able to reveal the details of the magnetic structure of the wall with a high spatial accuracy. In these layers, we show that the classical Bloch wall observed in single layers transforms into superposed N\'eel walls due to the magnetic coupling between the ferromagnetic layers. Quantitative agreement with micromagnetic calculations is achieved.Comment: Author adresses AB, SR, JM and AT: Laboratoire de Physique des Solides, CNRS, Universit\'e Paris Sud, UMR 8502, 91405 Orsay Cedex, France ML : Laboratoire PMTM, Institut Galil\'ee, CNRS, Universit\'e Paris-13, UPR 9001, 93430 Villetaneuse, Franc

    Skyrmion morphology in ultrathin magnetic films

    Full text link
    Nitrogen-vacancy magnetic microscopy is employed in quenching mode as a non-invasive, high resolution tool to investigate the morphology of isolated skyrmions in ultrathin magnetic films. The skyrmion size and shape are found to be strongly affected by local pinning effects and magnetic field history. Micromagnetic simulations including static disorder, based on a physical model of grain-to-grain thickness variations, reproduce all experimental observations and reveal the key role of disorder and magnetic history in the stabilization of skyrmions in ultrathin magnetic films. This work opens the way to an in-depth understanding of skyrmion dynamics in real, disordered media.Comment: 9 pages, 8 figures, including supplementary information

    Nanoscale magnetic field mapping with a single spin scanning probe magnetometer

    Get PDF
    We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics

    Universal dephasing in a chiral 1D interacting fermion system

    Full text link
    We consider dephasing by interactions in a one-dimensional chiral fermion system (e.g. a Quantum Hall edge state). For finite-range interactions, we calculate the spatial decay of the Green's function at fixed energy, which sets the contrast in a Mach-Zehnder interferometer. Using a physically transparent semiclassical ansatz, we find a power-law decay of the coherence at high energies and zero temperature (T=0), with a universal asymptotic exponent of 1, independent of the interaction strength. We obtain the dephasing rate at T>0 and the fluctuation spectrum acting on an electron.Comment: 5 pages, 3 figures; minor changes, version as published

    Highly asymmetric magnetic domain wall propagation due to coupling to a periodic pinning potential

    Get PDF
    Magneto-optical microscopy and magnetometry have been used to study 19 magnetization reversal in an ultrathin magnetically soft [Pt/Co]2 ferromagnetic film 20 coupled to an array of magnetically harder [Co/Pt]4 nanodots via a predominantly 21 dipolar interaction across a 3 nm Pt spacer. This interaction generates a spatially 22 periodic pinning potential for domain walls propagating through the continuous 23 magnetic film. When reversing the applied field with respect to the static nanodot 24 array magnetization orientation, strong asymmetries in the wall velocity and switching 25 fields are observed. Asymmetric switching fields mean that the hysteresis of the film is 26 characterized by a large bias field of dipolar origin which is linked to the wall velocity 27 asymmetry. This latter asymmetry, though large at low fields, vanishes at high fields 28 where the domains become round and compact. A field-polarity-controlled transition 29 from dendritic to compact faceted domain structures is also seen at low field and a 30 model is proposed to interpret the transition
    corecore