4,397 research outputs found
Gamow-Teller strength distributions for double-beta-decaying nuclei within continuum-QRPA
A version of the pn-continuum-QRPA is outlined and applied to describe the
Gamow-Teller strength distributions for -decaying open-shell
nuclei. The calculation results obtained for the pairs of nuclei Cd-Sn
and Te-Xe are compared with available experimental data.Comment: 8 pages, 3 figures, To appear in the proceedings of "Nucleus-2007:
Fundamental problems of nuclear physics, atomic power engineering and nuclear
technologies" Voronezh, Russia, June 25-29, 200
Seasonal Water "Pump" in the Atmosphere of Mars: Vertical Transport to the Thermosphere
We present results of simulations with the Max Planck Institute general
circulation model (MPI-MGCM) implementing a hydrological cycle scheme. The
simulations reveal a seasonal water "pump" mechanism responsible for the upward
transport of water vapor. This mechanism occurs in high latitudes above
60 of the southern hemisphere at perihelion, when the upward branch of
the meridional circulation is particularly strong. A combination of the mean
vertical flux with variations induced by solar tides facilitates penetration of
water across the "bottleneck" at approximately 60 km. The meridional
circulation then transports water across the globe to the northern hemisphere.
Since the intensity of the meridional cell is tightly controlled by airborne
dust, the water abundance in the thermosphere strongly increases during dust
storms.Comment: 15 pages, 4 figure
Apparent power-law behavior of conductance in disordered quasi-one-dimensional systems
Dependence of hopping conductance on temperature and voltage for an ensemble
of modestly long one-dimensional wires is studied numerically using the
shortest-path algorithm. In a wide range of parameters this dependence can be
approximated by a power-law rather than the usual stretched-exponential form.
Relation to recent experiments and prior analytical theory is discussed.Comment: 5 pages, 3 figures. Comparison with prior theoretical and
experimental work was extende
On Gamow-Teller strength distributions for -decaying nuclei within continuum-QRPA
An isospin-selfconsistent pn-continuum-QRPA approach is formulated and
applied to describe the Gamow-Teller strength distributions for
-decaying open-shell nuclei. The calculation results obtained for
the pairs of nuclei Ge-Se, Mo-Ru, Cd-Sn, and
Te-Xe are compared with available experimental data
Semimicroscopical description of the simplest photonuclear reactions accompanied by excitation of the giant dipole resonance in medium-heavy mass nuclei
A semimicroscopical approach is applied to describe photoabsorption and
partial photonucleon reactions accompanied by the excitation of the giant
dipole resonance (GDR). The approach is based on the continuum-RPA (CRPA) with
a phenomenological description for the spreading effect. The phenomenological
isoscalar part of the nuclear mean field, momentum-independent Landau-Migdal
particle-hole interaction, and separable momentum-dependent forces are used as
input quantities for the CRPA calculations. The experimental photoabsorption
and partial -reaction cross sections in the vicinity of the GDR are
satisfactorily described for Y, Ce and Pb target nuclei.
The total direct-neutron-decay branching ratio for the GDR in Ca and
Pb is also evaluated.Comment: 19 pages, 5 eps figure
Excitons in anisotropic 2D semiconducting crystals
The excitonic behavior of anisotropic two-dimensional crystals is
investigated using numerical methods. We employ a screened potential arising
due to the system polarizability to solve the central-potential problem using
the Numerov approach. The dependence of the exciton energies on the interaction
strength and mass anisotropy is demonstrated. We use our results to obtain the
exciton binding energy in phosphorene as a function of the substrate dielectric
constant.Comment: 7 pages, 7 figure
Two-dimensional square buckled Rashba lead chalcogenides
We propose the lead sulphide (PbS) monolayer as a two-dimensional semiconductor with a large Rashba-like spin-orbit effect controlled by the out-of-plane buckling. The buckled PbS conduction band is found to possess Rashba-like dispersion and spin texture at the M and Γ points, with large effective Rashba parameters of λ∼5 eV Å and λ∼1 eV Å, respectively. Using a tight-binding formalism, we show that the Rashba effect originates from the very large spin-orbit interaction and the hopping term that mixes the in-plane and out-of-plane p orbitals of Pb and S atoms. The latter, which depends on the buckling angle, can be controlled by applying strain to vary the spin texture as well as the Rashba parameter at Γ and M. Our density functional theory results together with tight-binding formalism provide a unifying framework for designing Rashba monolayers and for manipulating their spin properties.P.Z.H., H.S.P., and D.K.C. acknowledge the support of the Physics and Mechanical Engineering Department at Boston University. P.Z.H. is grateful for the hospitality of the NUS Centre for Advanced 2D Materials and Graphene Research Centre where this work was initiated. D.K.C. acknowledges the hospitality of the Aspen Center for Physics, which is supported by the US National Science Foundation Grant No. PHY-1607611. A.S.R., A.C.,and A.H.C.N. acknowledge support by the National Research Foundation, Prime Minister Office, Singapore, under its Medium Sized Centre Programme and CRP award "Novel 2D materials with tailored properties: Beyond graphene" (Grant No. R-144-000295-281). (Physics and Mechanical Engineering Department at Boston University; PHY-1607611 - US National Science Foundation; R-144-000295-281 - National Research Foundation, Prime Minister Office, Singapore, under its Medium Sized Centre Programme and CRP award "Novel 2D materials with tailored properties: Beyond graphene")Published versio
- …
