11 research outputs found

    Rapid Transcriptional Pulsing Dynamics of High Expressing Retroviral Transgenes in Embryonic Stem Cells

    Get PDF
    Single cell imaging studies suggest that transcription is not continuous and occurs as discrete pulses of gene activity. To study mechanisms by which retroviral transgenes can transcribe to high levels, we used the MS2 system to visualize transcriptional dynamics of high expressing proviral integration sites in embryonic stem (ES) cells. We established two ES cell lines each bearing a single copy, self-inactivating retroviral vector with a strong ubiquitous human EF1α gene promoter directing expression of mRFP fused to an MS2-stem-loop array. Transfection of MS2-EGFP generated EGFP focal dots bound to the mRFP-MS2 stem loop mRNA. These transcription foci colocalized with the transgene integration site detected by immunoFISH. Live tracking of single cells for 20 minutes detected EGFP focal dots that displayed frequent and rapid fluctuations in transcription over periods as short as 25 seconds. Similarly rapid fluctuations were detected from focal doublet signals that colocalized with replicated proviral integration sites by immunoFISH, consistent with transcriptional pulses from sister chromatids. We concluded that retroviral transgenes experience rapid transcriptional pulses in clonal ES cell lines that exhibit high level expression. These events are directed by a constitutive housekeeping gene promoter and may provide precedence for rapid transcriptional pulsing at endogenous genes in mammalian stem cells

    Differential cis-regulation of human versus mouse TERT gene expression in vivo: Identification of a human-specific repressive element

    No full text
    In vivo expression of human telomerase is significantly different from that of mouse telomerase. To assess the basis for this difference, a bacterial artificial chromosome clone containing the entire hTERT (human telomerase reverse transcriptase) gene was introduced in mice. In these transgenic mice, expression of the hTERT transgene was similar to that of endogenous hTERT in humans, rather than endogenous mTERT (mouse telomerase reverse transcriptase). In tissues and cells showing a striking difference in expression levels between hTERT in humans and mTERT in mice (i.e., liver, kidney, lung, uterus, and fibroblasts), expression of the hTERT transgene in transgenic mice was repressed, mimicking hTERT in humans. The transcriptional activity of the hTERT promoter was much lower than that of the mTERT promoter in mouse embryonic fibroblasts or human fibroblasts. Mutational analysis of the hTERT and mTERT promoters revealed that a nonconserved GC-box within the hTERT promoter was responsible for the human-specific repression. These results reveal that a difference in cis-regulation of transcription, rather than transacting transcription factors, is critical to species differences in tissue-specific TERT expression. Our data also suggest that the GC-box-mediated, human-specific mechanism for TERT repression is impaired in human cancers. This study represents a detailed characterization of the functional difference in a gene promoter of mice versus humans and provides not only important insight into species-specific regulation of telomerase and telomeres but also an experimental basis for generating mice humanized for telomerase enzyme and its pattern of expression

    A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells

    No full text
    Protein lysine methyltransferases G9a and GLP modulate the transcriptional repression of a variety of genes via dimethylation of Lys9 on histone H3 (H3K9me2) as well as dimethylation of non-histone targets. Here we report the discovery of UNC0638, an inhibitor of G9a and GLP with excellent potency and selectivity over a wide range of epigenetic and non-epigenetic targets. UNC0638 treatment of a variety of cell lines resulted in lower global H3K9me2 levels, equivalent to levels observed for small hairpin RNA knockdown of G9a and GLP with the functional potency of UNC0638 being well separated from its toxicity. UNC0638 markedly reduced the clonogenicity of MCF7 cells, reduced the abundance of H3K9me2 marks at promoters of known G9a-regulated endogenous genes and disproportionately affected several genomic loci encoding microRNAs. In mouse embryonic stem cells, UNC0638 reactivated G9a-silenced genes and a retroviral reporter gene in a concentration-dependent manner without promoting differentiation
    corecore