8,843 research outputs found
The concept of mass-density in classical thermodynamics and the Boltzmann kinetic equation for dilute gases
In this paper we discuss the mass-density of gas media as represented in kinetic theory. It is argued that conventional representations of this variable in gas kinetic theory contradict a macroscopic field variable and thermodynamic property in classical thermodynamics. We show that in cases where mass-density variations exist throughout the medium, introducing the mass-density as a macroscopic field variable leads to a restructuring of the diffusive/convective fluxes and implies some modifications to the hydrodynamic equations describing gas flows and heat transfer. As an illustration, we consider the prediction of mass-density profiles in a simple heat conduction problem between parallel plates maintained at different temperatures
Star formation history in the solar neighborhood: the link between stars and cosmology
Using a cosmological galactic evolutionary approach to model the Milky Way,
we calculate the star formation history (SFH) of the solar neighborhood. The
good agreement we obtain with the observational inferences suggests that our
physical model describes accurately the long term/large spatial trends of the
local and global Milky Way SFH. In this model, star formation is triggered by
disk gravitational instabilities and self-regulated by an energy balance in the
ISM. The drivers of the SFH are the cosmological gas infall rate and the gas
surface density determined by the primordial spin parameter. A LambdaCDM
cosmology was used throughout.Comment: 8 pages, uses kluwer.cls. Invited talk, to appear in "New Quests in
Stellar Astrophysics: The link between Stars and Cosmology", eds. M. Chavez,
A. Bressan, A. Buzzoni & D. Mayya, Kluwer Academic Publisher
Mode identification in rapidly rotating stars
Context: Recent calculations of pulsation modes in rapidly rotating polytropic models and models based on the Self-Consistent Field method have shown that the frequency spectrum of low degree pulsation modes can be described by an empirical formula similar to Tassoul's asymptotic formula, provided that the underlying rotation profile is not too differential.
Aims: Given the simplicity of this asymptotic formula, we investigate whether it can provide a means by which to identify pulsation modes in rapidly rotating stars.
Methods: We develop a new mode identification scheme which consists in scanning a multidimensional parameter space for the formula coefficients which yield the best-fitting asymptotic spectra. This mode identification scheme is then tested on artificial spectra based on the asymptotic formula, on random frequencies and on spectra based on full numerical eigenmode calculations for which the mode identification is known beforehand. We also investigate the effects of adding random frequencies to mimic the effects of chaotic modes which are also expected to show up in such stars.
Results: In the absence of chaotic modes, it is possible to accurately find a correct mode identification for most of the observed frequencies provided these frequencies are sufficiently close to their asymptotic values. The addition of random frequencies can very quickly become problematic and hinder correct mode identification. Modifying the mode identification scheme to reject the worst fitting modes can bring some improvement but the results still remain poorer than in the case without chaotic modes
Are the stars of a new class of variability detected in NGC~3766 fast rotating SPB stars?
A recent photometric survey in the NGC~3766 cluster led to the detection of
stars presenting an unexpected variability. They lie in a region of the
Hertzsprung-Russell (HR) diagram where no pulsation are theoretically expected,
in between the Scuti and slowly pulsating B (SPB) star instability
domains. Their variability periods, between 0.1--0.7~d, are outside the
expected domains of these well-known pulsators. The NCG~3766 cluster is known
to host fast rotating stars. Rotation can significantly affect the pulsation
properties of stars and alter their apparent luminosity through gravity
darkening. Therefore we inspect if the new variable stars could correspond to
fast rotating SPB stars. We carry out instability and visibility analysis of
SPB pulsation modes within the frame of the traditional approximation. The
effects of gravity darkening on typical SPB models are next studied. We find
that at the red border of the SPB instability strip, prograde sectoral (PS)
modes are preferentially excited, with periods shifted in the 0.2--0.5~d range
due to the Coriolis effect. These modes are best seen when the star is seen
equator-on. For such inclinations, low-mass SPB models can appear fainter due
to gravity darkening and as if they were located between the ~Scuti and
SPB instability strips.Comment: 6 pages, 2 figures, to appear in the proceedings of the IAU Symposium
307, New windows on massive stars: asteroseismology, interferometry, and
spectropolarimetr
Evolution of basin and range structure in the Ruby Mountains and vicinity, Nevada
Results from various age dating techniques, seismic reflection profiling hydrocarbon maturation studies, and structural analysis were used to evaluate the Cenozoic deformation in the Ruby Mountains and adjoining ranges (pinyon Range and Cortez Range) in Elko and Eureka Counties, Nevada. Age dating techniques used include potassium-argon ages of biotites from granites published by Kistler et al. (1981) and fission track ages from apatite and zircon. Fission track ages from apatite reflect a closing temperature of 100 plus or minus 20 deg C. Zircon fission track ages reflect a closing temperature of 175 plus or minus 25 deg C and potassium-argon ages from brotite reflect a closing temperature of 250 plus or minus 30 deg C. Thus these results allow a reasonably precise tracking of the evolution of the ranges during the Cenozoic. Seismic reflection data are available from Huntington Valley. Access to seismic reflection data directly to the west of the Harrison Pass Pluton in the central Ruby Mountains was obtained. In addition results are available from several deep exploration holes in Huntington Valley
A new Finite Element Technology for the Numerical Simulation of High Speed Forming Processes
In this contribution we propose a new solid-shell element formulation based on the concept of reduced integration with hourglass stabilization. Due to the absence of shear locking thin structures can be computed with only one element layer over the thickness. This enhances the computational efficiency in two ways. First of all the number of elements is reduced. Secondly, working with an explicit scheme, a larger critical time step is obtained. The damping and the mass matrix are not affected by the element technological treatment. The formulation is validated at first by typical element examples as well as two forming simulations
Towards the Contact and Impact Modeling in Finite Element Simulations of High Speed Forming
In finite element simulations of high speed sheet metal forming processes the contact between workpiece and forming tools has to be modeled very carefully. Several important aspects have to be taken into account. Robust and locking-free finite element formulations are required to model the sheet forming process, the die has to be considered as a deformable component, and the description of the contact constraints between workpiece and forming tools is a significant source of shortcomings in modeling. The contact and impact simulation makes high demands on the robustness of finite element formulations. For this reason finite elements with low order ansatz functions are preferred. Furthermore, they prove to be advantageous when automatic meshing tools are applied. To overcome the undesired effects of locking we work with an improved version of the innovative solid-shell concept proposed by [11]. It is based on the concept of reduced integration with hourglass stabilization. The use of this solid-shell finite element allows us to test the influence of the modeling of the die and the contact constraints in a very efficient way. An overview of so-called macro and micro deformations of forming tools in sheet metal forming simulations can be found in [8]. We show that the deformation of the die has a noticeable influence in electromagnetic sheet metal forming. However, in most commercial finite element codes taking into account elastically deformable forming tools requires a full finite element discretization of the die which leads to very high computational effort. Therefore users often assume the tools as being rigid and apply node-based spring-dashpot systems to improve the modeling of the interaction between sheet metal and die. But also in this case local interactions cannot be taken into account realistically. As a possible remedy we investigate a fully elastic description of the forming tools in combination with model reduction techniques. These significantly reduce the number of degrees-of-freedom in the finite element simulation. For this reason we present different alternatives of this technique
The clinical pharmacology of intranasal l-methamphetamine.
BackgroundWe studied the pharmacology of l-methamphetamine, the less abused isomer, when used as a nasal decongestant.Methods12 subjects self-administered l-methamphetamine from a nonprescription inhaler at the recommended dose (16 inhalations over 6 hours) then at 2 and 4 (32 and 64 inhalations) times this dose. In a separate session intravenous phenylephrine (200 microg) and l-methamphetamine (5 mg) were given to define alpha agonist pharmacology and bioavailability. Physiological, cardiovascular, pharmacokinetic, and subjective effects were measured.ResultsPlasma l-methamphetamine levels were often below the level of quantification so bioavailability was estimated by comparing urinary excretion of the intravenous and inhaled doses, yielding delivered dose estimates of 74.0 +/- 56.1, 124.7 +/- 106.6, and 268.1 +/- 220.5 microg for ascending exposures (mean 4.2 +/- 3.3 microg/inhalation). Physiological changes were minimal and not dose-dependent. Small decreases in stroke volume and cardiac output suggesting mild cardiodepression were seen.ConclusionInhaled l-methamphetamine delivered from a non-prescription product produced minimal effects but may be a cardiodepressant
- …
