797 research outputs found
Development of the Magnetic Excitations of Charge-Stripe Ordered La(2-x)Sr(x)NiO(4) on Doping Towards Checkerboard Charge Order
The magnetic excitation spectrums of charge stripe ordered La(2-x)Sr(x)NiO(4)
x = 0.45 and x = 0.4 were studied by inelastic neutron scattering. We found the
magnetic excitation spectrum of x = 0.45 from the ordered Ni^2+ S = 1 spins to
match that of checkerboard charge ordered La(1.5)Sr(0.5)NiO(4). The distinctive
asymmetry in the magnetic excitations above 40 meV was observed for both doping
levels, but an additional ferromagnetic mode was observed in x = 0.45 and not
in the x = 0.4. We discuss the origin of crossover in the excitation spectrum
between x = 0.45 and x = 0.4 with respect to discommensurations in the charge
stripe structure.Comment: 4 Figures. To be appear in the J. Kor. Phys. Soc. as a proceedings
paper from the ICM 2012 conferenc
Observation of a superconducting glass state in granular superconducting diamond
The magnetic field dependence of the superconductivity in nanocrystalline
boron doped diamond thin films is reported. Evidence of a glass state in the
phase diagram is presented, as demonstrated by electrical resistance and
magnetic relaxation measurements. The position of the phase boundary in the H-T
plane is determined from resistance data by detailed fitting to
zero-dimensional fluctuation conductivity theory. This allows determination of
the boundary between resistive and non-resistive behavior to be made with
greater precision than the standard ad hoc onset/midpoint/offset criterion
Fluctuation spectroscopy as a probe of granular superconducting diamond films
We present resistance versus temperature data for a series of boron-doped
nanocrystalline diamond films whose grain size is varied by changing the film
thickness. Upon extracting the fluctuation conductivity near to the critical
temperature we observe three distinct scaling regions -- 3D intragrain,
quasi-0D, and 3D intergrain -- in confirmation of the prediction of Lerner,
Varlamov and Vinokur. The location of the dimensional crossovers between these
scaling regions allows us to determine the tunnelling energy and the Thouless
energy for each film. This is a demonstration of the use of \emph{fluctuation
spectroscopy} to determine the properties of a superconducting granular system
Probing the magnetic ground state of the molecular Dysprosium triangle
We present zero field muon spin lattice relaxation measurements of a
Dysprosium triangle molecular magnet. The local magnetic fields sensed by the
implanted muons indicate the coexistence of static and dynamic internal
magnetic fields below K. Bulk magnetization and heat capacity
measurements show no indication of magnetic ordering below this temperature. We
attribute the static fields to the slow relaxation of the magnetization in the
ground state of Dy3. The fluctuation time of the dynamic part of the field is
estimated to be ~0.55 s at low temperaturesComment: 5 pages, 5 figures, accepted for publication in Phys. Rev.
Dynamic behavior of magnetic avalanches in the spin-ice compound DyTiO
Avalanches of the magnetization, that is to say an abrupt reversal of the
magnetization at a given field, have been previously reported in the spin-ice
compound DyTiO. This out-of-equilibrium process, induced by
magneto-thermal heating, is quite usual in low temperature magnetization
studies. A key point is to determine the physical origin of the avalanche
process. In particular, in spin-ice compounds, the origin of the avalanches
might be related to the monopole physics inherent to the system. We have
performed a detailed study of the avalanche phenomena in three single crystals,
with the field oriented along the [111] direction, perpendicular to [111] and
along the [100] directions. We have measured the changing magnetization during
the avalanches and conclude that avalanches in spin ice are quite slow compared
to the avalanches reported in other systems such as molecular magnets. Our
measurements show that the avalanches trigger after a delay of about 500 ms and
that the reversal of the magnetization then occurs in a few hundreds of
milliseconds. These features suggest an unusual propagation of the reversal,
which might be due to the monopole motion. The avalanche fields seem to be
reproducible in a given direction for different samples, but they strongly
depend on the initial state of magnetization and on how the initial state was
achieved.Comment: 11 pages, 14 figure
Dilution effects in HoYSnO: from the Spin Ice to the single-ion magnet
A study of the modifications of the magnetic properties of
HoYSnO upon varying the concentration of diamagnetic
Y ions is presented. Magnetization and specific heat measurements show
that the Spin Ice ground-state is only weakly affected by doping for , even if non-negligible changes in the crystal field at Ho occur.
In this low doping range SR relaxation measurements evidence a
modification in the low-temperature dynamics with respect to the one observed
in the pure Spin Ice. For , or at high temperature, the dynamics
involve fluctuations among Ho crystal field levels which give rise to a
characteristic peak in Sn nuclear spin-lattice relaxation rate. In this
doping limit also the changes in Ho magnetic moment suggest a variation
of the crystal field parameters.Comment: 4 pages, 5 figures, proceedings of HFM2008 Conferenc
- …