4,675 research outputs found
Iron oxidation at low temperature (260–500 C) in air and the effect of water vapor
The oxidation of iron has been studied at low temperatures (between 260 and 500 C) in dry air or air with 2 vol% H2O, in the framework of research on dry corrosion of nuclear waste containers during long-term interim storage. Pure iron is regarded as a model material for low-alloyed steel. Oxidation tests were performed in a thermobalance (up to 250 h) or in a laboratory furnace (up to 1000 h). The oxide scales formed were characterized using SEM-EDX, TEM, XRD, SIMS and EBSD techniques. The parabolic rate constants deduced from microbalance experiments were found to be in good agreement with the few existing values of the literature. The presence of water vapor in air was found to strongly influence the transitory stages of the kinetics. The entire structure of the oxide scale was composed of an internal duplex magnetite scale made of columnar grains and an external hematite scale made of equiaxed grains. 18O tracer experiments performed at 400 C allowed to propose a growth mechanism of the scale
Feasiblity study for a 34 GHz (Ka band) gyroamplifier
The feasibility of using a gyroklystron power tube as the final amplifier in a 400 kW CW 34 GHz transmitter on the Goldstone Antenna is investigated. A conceptual design of the gyroklystron and the transmission line connecting it with the antenna feed horn is presented. The performance characteristics of the tube and transmission line are compared to the transmitter requirements for a deep space radar system. Areas of technical risk for a follow-on hardware development program for the gyroklystron amplifier and overmoded transmission line components are discussed
Supernova Remnants in the Magellanic Clouds. IV. X-Ray Emission from the Largest SNR in the LMC
We present the first X-ray detection of SNR 0450-70.9 the largest known
supernova remnant (SNR) in the Large Magellanic Cloud. To study the physical
conditions of this SNR, we have obtained XMM-Newton X-ray observations, optical
images and high-dispersion spectra, and radio continuum maps. Optical images of
SNR 0450-70.9 show a large, irregular elliptical shell with bright filaments
along the eastern and western rims and within the shell interior. The interior
filaments have higher [S II]/Halpha ratios and form an apparent inner shell
morphology. The X-ray emission region is smaller than the full extent of the
optical shell, with the brightest X-ray emission found within the small
interior shell and on the western rim of the large shell. The expansion
velocity of the small shell is ~220 km/s, while the large shell is ~120 km/s.
The radio image shows central brightening and a fairly flat radio spectral
index over the SNR. However, no point X-ray or radio source corresponding to a
pulsar is detected and the X-ray emission is predominantly thermal. Therefore,
these phenomena can be most reasonably explained in terms of the advanced age
of the large SNR. Using hydrodynamic models combined with a nonequilibrium
ionization model for thermal X-ray emission, we derived a lower limit on the
SNR age of about 45,000 yr, well into the later stages of SNR evolution.
Despite this, the temperature and density derived from spectral fits to the
X-ray emission indicate that the remnant is still overpressured, and thus that
the development is largely driven by hot gas in the SNR interior.Comment: Accepted for publication in The Astrophysical Journa
Anomalous Noise in the Pseudogap Regime of YBaCuO
An unusual noise component is found near and below about 250 K in the normal
state of underdoped YBCO and Ca-YBCO films. This noise regime, unlike the more
typical noise above 250 K, has features expected for a symmetry-breaking
collective electronic state. These include large individual fluctuators, a
magnetic sensitivity, and aging effects. A possible interpretation in terms of
fluctuating charge nematic order is presented.Comment: 4 pages, 4 figure
A first--order irreversible thermodynamic approach to a simple energy converter
Several authors have shown that dissipative thermal cycle models based on
Finite-Time Thermodynamics exhibit loop-shaped curves of power output versus
efficiency, such as it occurs with actual dissipative thermal engines. Within
the context of First-Order Irreversible Thermodynamics (FOIT), in this work we
show that for an energy converter consisting of two coupled fluxes it is also
possible to find loop-shaped curves of both power output and the so-called
ecological function against efficiency. In a previous work Stucki [J.W. Stucki,
Eur. J. Biochem. vol. 109, 269 (1980)] used a FOIT-approach to describe the
modes of thermodynamic performance of oxidative phosphorylation involved in
ATP-synthesis within mithochondrias. In that work the author did not use the
mentioned loop-shaped curves and he proposed that oxidative phosphorylation
operates in a steady state simultaneously at minimum entropy production and
maximum efficiency, by means of a conductance matching condition between
extreme states of zero and infinite conductances respectively. In the present
work we show that all Stucki's results about the oxidative phosphorylation
energetics can be obtained without the so-called conductance matching
condition. On the other hand, we also show that the minimum entropy production
state implies both null power output and efficiency and therefore this state is
not fulfilled by the oxidative phosphorylation performance. Our results suggest
that actual efficiency values of oxidative phosphorylation performance are
better described by a mode of operation consisting in the simultaneous
maximization of the so-called ecological function and the efficiency.Comment: 20 pages, 7 figures, submitted to Phys. Rev.
- …