397 research outputs found
Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites.
BACKGROUND: Relapses originating from hypnozoites are characteristic of Plasmodium vivax infections. Thus, reappearance of parasitemia after treatment can result from relapse, recrudescence, or reinfection. It has been assumed that parasites causing relapse would be a subset of the parasites that caused the primary infection. METHODS: Paired samples were collected before initiation of antimalarial treatment and at recurrence of parasitemia from 149 patients with vivax malaria in Thailand (n=36), where reinfection could be excluded, and during field studies in Myanmar (n=75) and India (n=38). RESULTS: Combined genetic data from 2 genotyping approaches showed that novel P. vivax populations were present in the majority of patients with recurrent infection (107 [72%] of 149 patients overall [78% of patients in Thailand, 75% of patients in Myanmar {Burma}, and 63% of patients in India]). In 61% of the Thai and Burmese patients and in 55% of the Indian patients, the recurrent infections contained none of the parasite genotypes that caused the acute infection. CONCLUSIONS: The P. vivax populations emerging from hypnozoites commonly differ from the populations that caused the acute episode. Activation of heterologous hypnozoite populations is the most common cause of first relapse in patients with vivax malaria
The role of anti-malarial drugs in eliminating malaria
Effective anti-malarial drug treatment reduces malaria transmission. This alone can reduce the incidence and prevalence of malaria, although the effects are greater in areas of low transmission where a greater proportion of the infectious reservoir is symptomatic and receives anti-malarial treatment. Effective treatment has greater effects on the transmission of falciparum malaria, where gametocytogenesis is delayed, compared with the other human malarias in which peak gametocytaemia and transmissibility coincides with peak asexual parasite densities. Mature Plasmodium falciparum gametocytes are more drug resistant and affected only by artemisinins and 8-aminoquinolines. The key operational question now is whether primaquine should be added to artemisinin combination treatments for the treatment of falciparum malaria to reduce further the transmissibility of the treated infection. Radical treatment with primaquine plays a key role in the eradication of vivax and ovale malaria. More evidence is needed on the safety of primaquine when administered without screening for G6PD deficiency to inform individual and mass treatment approaches in the context of malaria elimination programmes
Correction: Yuhana et al. Rickettsial infections are neglected causes of acute febrile illness in Teluk Intan, Peninsular Malaysia. Trop. Med. Infect. Dis. 2022, 7, 77
The authors wish to make the following correction to this paper [...]
Population pharmacokinetic and pharmacodynamic properties of intramuscular quinine in Tanzanian children with severe Falciparum malaria.
Although artesunate is clearly superior, parenteral quinine is still used widely for the treatment of severe malaria. A loading-dose regimen has been recommended for 30 years but is still often not used. A population pharmacokinetic study was conducted with 75 Tanzanian children aged 4 months to 8 years with severe malaria who received quinine intramuscularly; 69 patients received a loading dose of 20 mg quinine dihydrochloride (salt)/kg of body weight. Twenty-one patients had plasma quinine concentrations detectable at baseline. A zero-order absorption model with one-compartment disposition pharmacokinetics described the data adequately. Body weight was the only significant covariate and was implemented as an allometric function on clearance and volume parameters. Population pharmacokinetic parameter estimates (and percent relative standard errors [%RSE]) of elimination clearance, central volume of distribution, and duration of zero-order absorption were 0.977 liters/h (6.50%), 16.7 liters (6.39%), and 1.42 h (21.5%), respectively, for a typical patient weighing 11 kg. Quinine exposure was reduced at lower body weights after standard weight-based dosing; there was 18% less exposure over 24 h in patients weighing 5 kg than in those weighing 25 kg. Maximum plasma concentrations after the loading dose were unaffected by body weight. There was no evidence of dose-related drug toxicity with the loading dosing regimen. Intramuscular quinine is rapidly and reliably absorbed in children with severe falciparum malaria. Based on these pharmacokinetic data, a loading dose of 20 mg salt/kg is recommended, provided that no loading dose was administered within 24 h and no routine dose was administered within 12 h of admission. (This study has been registered with Current Controlled Trials under registration number ISRCTN 50258054.)
Primaquine in glucose-6-phosphate dehydrogenase deficiency: an adaptive pharmacometric assessment of ascending dose regimens in healthy volunteers
Background: Primaquine is an 8-aminoquinoline antimalarial. It is the only widely available treatment to prevent relapses of Plasmodium vivax malaria. The 8-aminoquinolines cause dose-dependent haemolysis in glucose-6-phosphate dehydrogenase deficiency (G6PDd). G6PDd is common in malaria endemic areas but testing is often not available. As a consequence primaquine is underused.
Methods: We conducted an adaptive pharmacometric study to characterise the relationship between primaquine dose and haemolysis in G6PDd. The aim was to explore shorter and safer primaquine radical cure regimens compared to the currently recommended 8-weekly regimen (0.75 mg/kg once weekly), potentially obviating the need for G6PD testing. Hemizygous G6PDd healthy adult Thai and Burmese male volunteers were admitted to the Hospital for Tropical Diseases in Bangkok. In Part 1, volunteers were given ascending dose primaquine regimens whereby daily doses were increased from 7.5 mg up to 45 mg over 15â20 days. In Part 2 conducted at least 6 months later, a single primaquine 45 mg dose was given.
Results: 24 volunteers were enrolled in Part 1, and 16 in Part 2 (13 participated in both studies). In three volunteers, the ascending dose regimen was stopped because of haemolysis (n=1) and asymptomatic increases in transaminases (n=2; one was hepatitis E positive). Otherwise the ascending regimens were well tolerated with no drug-related serious adverse events. In Part 1, the median haemoglobin concentration decline was 3.7 g/dL (range: 2.1â5.9; relative decline of 26% [range: 15â40%]). Primaquine doses up to 0.87 mg/kg/day were tolerated subsequently without clinically significant further falls in haemoglobin. In Part 2, the median haemoglobin concentration decline was 1.7 g/dL (range 0.9â4.1; relative fall of 12% [range: 7â30% decrease]). The ascending dose primaquine regimens gave seven times more drug but resulted in only double the haemoglobin decline.
Conclusions: In patients with Southeast Asian G6PDd variants, full radical cure treatment can be given in under 3 weeks compared with the current 8-week regimen.
Funding: Medical Research Council of the United Kingdom (MR/R015252/1) and Wellcome (093956/Z/10/C, 223253/Z/21/Z)
Critical discussion of Daniel C. Dennett, The Intentional Stance.
Daniel Dennett spends a good bit of time defending the possibility of a compromise position on the reality of beliefs and desires. It will be claimed that a puzzle remains in the interpretation of Dennett's position. In earlier works one finds a theme, which we can call 'near-fatalism', which has not been integrated with the kind of middle ground he describes. But the near-fatalism theme is dropped in later work. Is it because it is felt to be incompatible with that middle ground compromise? It is not obviously so
Primaquine in vivax malaria: an update and review on management issues
Primaquine was officially licensed as an anti-malarial drug by the FDA in 1952. It has remained the only FDA licensed drug capable of clearing the intra-hepatic schizonts and hypnozoites of Plasmodium vivax. This update and review focuses on five major aspects of primaquine use in treatment of vivax malaria, namely: a) evidence of efficacy of primaquine for its current indications; b) potential hazards of its widespread use, c) critical analysis of reported resistance against primaquine containing regimens; d) evidence for combining primaquine with artemisinins in areas of chloroquine resistance; and e) the potential for replacement of primaquine with newer drugs
Artemisinin derivatives versus quinine in treating severe malaria in children: a systematic review
<p>Abstract</p> <p>Background</p> <p>The efficacy of intravenous quinine, which is the mainstay for treating severe malaria in children, is decreasing in South East Asia and Africa. Artemisinin derivatives are a potential alternative to quinine. However, their efficacy compared to quinine in treating severe malaria in children is not clearly understood. The objective of this review was to assess the efficacy of parenteral artemisinin derivatives versus parenteral quinine in treating severe malaria in children.</p> <p>Methods</p> <p>All randomized controlled studies comparing parenteral artemisinin derivatives with parenteral quinine in treating severe malaria in children were included in the review. Data bases searched were: The Cochrane Central Register of Controlled Trials (The Cochrane Library Issue 4, 2007), MEDLINE (1966 to February 2008), EMBASE (1980 to February 2008), and LILACS (1982 to February 2008). Dichotomous variables were compared using risk ratios (RR) and the continuous data using weighted mean difference (WMD).</p> <p>Results</p> <p>Twelve trials were included (1,524 subjects). There was no difference in mortality between artemisinin derivatives and quinine (RR = 0.90, 95% CI 0.73 to 1.12). The artemisinin derivatives resolved coma faster than quinine (WMD = -4.61, 95% CI: -7.21 to -2.00, fixed effect model), but when trials with adequate concealment only were considered this differences disappeared. There was no statistically significant difference between the two groups in parasite clearance time, fever clearance time, incidence of neurological sequelae and 28<sup>th </sup>day cure rate. One trial reported significantly more local reactions at the injection site with intramuscular quinine compared to artemether. None of the trials was adequately powered to demonstrate equivalence.</p> <p>Conclusion</p> <p>There was no evidence that treatment of children with severe malaria with parenteral artemisinin derivatives was associated with lower mortality or long-term morbidity compared to parenteral quinine. Future studies require adequately powered equivalence trial design to decide whether both drugs are equally effective.</p
Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria
Quinine remains an important anti-malarial drug almost 400 years after its effectiveness was first documented. However, its continued use is challenged by its poor tolerability, poor compliance with complex dosing regimens, and the availability of more efficacious anti-malarial drugs. This article reviews the historical role of quinine, considers its current usage and provides insight into its appropriate future use in the treatment of malaria. In light of recent research findings intravenous artesunate should be the first-line drug for severe malaria, with quinine as an alternative. The role of rectal quinine as pre-referral treatment for severe malaria has not been fully explored, but it remains a promising intervention. In pregnancy, quinine continues to play a critical role in the management of malaria, especially in the first trimester, and it will remain a mainstay of treatment until safer alternatives become available. For uncomplicated malaria, artemisinin-based combination therapy (ACT) offers a better option than quinine though the difficulty of maintaining a steady supply of ACT in resource-limited settings renders the rapid withdrawal of quinine for uncomplicated malaria cases risky. The best approach would be to identify solutions to ACT stock-outs, maintain quinine in case of ACT stock-outs, and evaluate strategies for improving quinine treatment outcomes by combining it with antibiotics. In HIV and TB infected populations, concerns about potential interactions between quinine and antiretroviral and anti-tuberculosis drugs exist, and these will need further research and pharmacovigilance
- âŚ