99 research outputs found

    Moderate aerobic exercise training decreases middle-aged induced pathologic cardiac hypertrophy by improving Klotho expression, MAPK signaling pathway and oxidative stress status in Wistar rats

    Get PDF
    Objective(s): This study aimed to investigate the effect of aerobic training on serum levels of Klotho, cardiac tissue levels of H2O2 and phosphorylation of ERK1/2 and P38 as well as left ventricular internal diameter (LVID), the left ventricle wall thickness (LVWT) and fibrosis in middle-aged rats. Materials and Methods: Forty wistar rats, including young rats (n=10, 4 month-old) and middle-aged rats (n=30, 13-15 months-old) were enrolled in this experimental study. The all young and 10 middle-aged rats were sacrificed (randomly) under deep anesthesia without any exercise training as normal young control and normal middle-aged control respectively. The remaining 20 middle-aged rats participated in 4 (n=10) or 8-week (n=10) aerobic exercise training. Results: There were significant differences in the plasmatic Klotho levels and the heart tissue levels of phosphorylated-ERK1/2 (p-ERK1/2), P-P38 and H2O2, LVWT, LVID and fibrosis between young and middle-aged rats (P=0.01). Plasmatic Klotho level was significantly increased after eight weeks training (P=0.011). Also, p-ERK1/2 was significantly decreased after eight weeks and p-P38 was significantly decreased in the fourth (P=0.01) and eight weeks of training (P=0.01). A similar decrease was reported for aging-induced H2O2 in the fourth (P=0.016) and eighth weeks (P=0.001). LVID was significantly increased in eight weeks, but LVWT and fibrosis was significantly reduced in the eighth week (P=0.011, P=0.028, P=0.001 respectively).Conclusion: Moderate aerobic training attenuates aging-induced pathological cardiac hypertrophy at least partially by restoring the Klotho levels, attenuating oxidative stress, and reduction in the phosphorylation of ERK1/2, P38 and fibrosis

    Soil properties influence the toxicity and availability of Zn from ZnO nanoparticles to earthworms

    Get PDF
    To develop models that support site-specific risk assessment for nanoparticles (NPs), a better understanding of how NP transformation processes, bioavailability and toxicity are influenced by soil properties is needed. In this study, the influence of differing soil properties on the bioavailability and toxicity of zinc oxide (ZnO) NPs and ionic Zn to the earthworm Eisenia fetida was investigated. Earthworms were exposed to ZnO_NPs and ionic Zn, between 100 and 4400 mg Zn/kg, in four different natural soils (organic matter content: 1.8–16.7%, soil pH: 5.4–8.3, representing sandy loam to calcareous soils). Survival and reproduction were assessed after 28 and 56 days, respectively. Zn concentrations in soil pore waters were measured while labile concentrations of Zn were measured using an in-situ dynamic speciation technique (diffusive gradient in thin films, DGT). Earthworm Zn tissue concentrations were also measured. Soil properties influenced earthworm reproduction between soil controls, with highest reproductive output in soils with pH values of 6–7. Toxicity was also influenced by soil properties, with EC50s based on total Zn in soil ranging from 694 to >2200 mg Zn/kg for ZnO_NP and 277–734 mg Zn/kg for ionic Zn. Soil pore water and DGT measurements showed good agreement in the relative amount of Zn extracted across the four soils. Earthworms exposed to ZnO_NPs survived higher Zn concentrations in the soils and had higher tissue concentrations compared with ionic Zn exposures, particularly in the high organic content calcareous soil. These higher tissue concentrations in ZnO_NP exposed earthworm could have consequences for the persistence and trophic mobility of Zn in terrestrial systems and need to be further investigated to elucidate if there any longer-term risks associated with sustained input of ZnO_NP to soil

    Chromium and cerium co-doped magnetite/reduced graphene oxide nanocomposite as a potent antibacterial agent against S. aureus

    No full text
    The development of innovative antibacterial samples with high efficacy has received a great deal of interest. Herein, we synthesized magnetite modified by Cr and co-modified by Cr and Ce, along with their reduced graphene oxide (rGO)-based nanocomposites via facile hydrothermal and co-precipitation methods. The rGO-based samples showed proper magnetic behavior, high porosity, and vast specific surface area. The high specific surface area provided more adsorptive active sites with higher potentials for the decomposition of Staphylococcus aureus (S. aureus) cells. The antibacterial performance of the samples against S. aureus was evaluated at 50 and 100 μg mL−1 through the colony-forming unit (CFU) method and the minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) values were subsequently determined. As per results, not only chromium cations could effectively damage the DNA of bacteria, but also the antibacterial efficacy was further enhanced by co-doping of cerium and the integration with rGO nanosheets. The antibacterial results were confirmed through the changes observed in the morphology and topology of the bacteria before and after the treatment using SEM and AFM analyses. Ultimately, the plausible S. aureus inactivation mechanism of the samples was disclosed. © 2021 Elsevier Lt

    Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials

    No full text
    Meta-materials are structures when their small-scale properties are considered, but behave as materials when their homogenized macroscopic properties are studied. There is an intimate relationship between the design of the small-scale structure and the homogenized properties of such materials. In this article, we studied that relationship for meta-biomaterials that are aimed for biomedical applications, otherwise known as meta-biomaterials. Selective laser melted porous titanium (Ti6Al4V ELI) structures were manufactured based on three different types of repeating unit cells, namely cube, diamond, and truncated cuboctahedron, and with different porosities. The morphological features, static mechanical properties, and fatigue behavior of the porous biomaterials were studied with a focus on their fatigue behavior. It was observed that, in addition to static mechanical properties, the fatigue properties of the porous biomaterials are highly dependent on the type of unit cell as well as on porosity. None of the porous structures based on the cube unit cell failed after 106 loading cycles even when the applied stress reached 80% of their yield strengths. For both other unit cells, higher porosities resulted in shorter fatigue lives for the same level of applied stress. When normalized with respect to their yield stresses, the S-N data points of structures with different porosities very well (R2>0.8) conformed to one single power law specific to the type of the unit cell. For the same level of normalized applied stress, the truncated cuboctahedron unit cell resulted in a longer fatigue life as compared to the diamond unit cell. In a similar comparison, the fatigue lives of the porous structures based on both truncated cuboctahedron and diamond unit cells were longer than that of the porous structures based on the rhombic dodecahedron unit cell (determined in a previous study). The data presented in this study could serve as a basis for design of porous biomaterials as well as for corroboration of relevant analytical and computational models

    Additively manufactured metallic porous biomaterials based on minimal surfaces : A unique combination of topological, mechanical, and mass transport properties

    No full text
    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different types of triply periodic minimal surfaces (TPMS) that mimic the properties of bone to an unprecedented level of multi-physics detail. Sixteen different types of porous biomaterials were rationally designed and fabricated using selective laser melting (SLM) from a titanium alloy (Ti-6Al-4V). The topology, quasi-static mechanical properties, fatigue resistance, and permeability of the developed biomaterials were then characterized. In terms of topology, the biomaterials resembled the morphological properties of trabecular bone including mean surface curvatures close to zero. The biomaterials showed a favorable but rare combination of relatively low elastic properties in the range of those observed for trabecular bone and high yield strengths exceeding those reported for cortical bone. This combination allows for simultaneously avoiding stress shielding, while providing ample mechanical support for bone tissue regeneration and osseointegration. Furthermore, as opposed to other AM porous biomaterials developed to date for which the fatigue endurance limit has been found to be ≈20% of their yield (or plateau) stress, some of the biomaterials developed in the current study show extremely high fatigue resistance with endurance limits up to 60% of their yield stress. It was also found that the permeability values measured for the developed biomaterials were in the range of values reported for trabecular bone. In summary, the developed porous metallic biomaterials based on TPMS mimic the topological, mechanical, and physical properties of trabecular bone to a great degree. These properties make them potential candidates to be applied as parts of orthopedic implants and/or as bone-substituting biomaterials. STATEMENT OF SIGNIFICANCE: Bone-substituting biomaterials aim to mimic bone properties. Although mimicking some of bone properties is feasible, biomaterials that could simultaneously mimic all or most of the relevant bone properties are rare. We used rational design and additive manufacturing to develop porous metallic biomaterials that exhibit an interesting combination of topological, mechanical, and mass transport properties. The topology of the developed biomaterials resembles that of trabecular bone including a mean curvature close to zero. Moreover, the developed biomaterials show an unusual combination of low elastic modulus to avoid stress shielding and high strength to provide mechanical support. The fatigue resistance of the developed biomaterials is also exceptionally high, while their permeability is in the range of values reported for bone

    Additively manufactured metallic porous biomaterials based on minimal surfaces : A unique combination of topological, mechanical, and mass transport properties

    No full text
    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different types of triply periodic minimal surfaces (TPMS) that mimic the properties of bone to an unprecedented level of multi-physics detail. Sixteen different types of porous biomaterials were rationally designed and fabricated using selective laser melting (SLM) from a titanium alloy (Ti-6Al-4V). The topology, quasi-static mechanical properties, fatigue resistance, and permeability of the developed biomaterials were then characterized. In terms of topology, the biomaterials resembled the morphological properties of trabecular bone including mean surface curvatures close to zero. The biomaterials showed a favorable but rare combination of relatively low elastic properties in the range of those observed for trabecular bone and high yield strengths exceeding those reported for cortical bone. This combination allows for simultaneously avoiding stress shielding, while providing ample mechanical support for bone tissue regeneration and osseointegration. Furthermore, as opposed to other AM porous biomaterials developed to date for which the fatigue endurance limit has been found to be ≈20% of their yield (or plateau) stress, some of the biomaterials developed in the current study show extremely high fatigue resistance with endurance limits up to 60% of their yield stress. It was also found that the permeability values measured for the developed biomaterials were in the range of values reported for trabecular bone. In summary, the developed porous metallic biomaterials based on TPMS mimic the topological, mechanical, and physical properties of trabecular bone to a great degree. These properties make them potential candidates to be applied as parts of orthopedic implants and/or as bone-substituting biomaterials. STATEMENT OF SIGNIFICANCE: Bone-substituting biomaterials aim to mimic bone properties. Although mimicking some of bone properties is feasible, biomaterials that could simultaneously mimic all or most of the relevant bone properties are rare. We used rational design and additive manufacturing to develop porous metallic biomaterials that exhibit an interesting combination of topological, mechanical, and mass transport properties. The topology of the developed biomaterials resembles that of trabecular bone including a mean curvature close to zero. Moreover, the developed biomaterials show an unusual combination of low elastic modulus to avoid stress shielding and high strength to provide mechanical support. The fatigue resistance of the developed biomaterials is also exceptionally high, while their permeability is in the range of values reported for bone

    Effect of moderate increasing exercice on the mechanical balance of the knee joint in young rats

    Full text link
    Purpose: It is hypothesized that the amount, duration and magnitude of mechanical loading are important factors that maintain the cartilage tissue in physiological condition. The underlying subchondral bone attached to the cartilage tissue and the cartilage-bone interface are influenced by the mechanical loading as well. In this study, we aimed to investigate adaptation of the rat knee joint to the mechanical demands. For this purpose, we applied load in the form of exercise using a moderate-intensity increasing running protocol. A series of analyses was performed to elucidate the response of cartilage and bone to this physical activity. Methods: Male Wistar rats (Charles River, Germany) with an age of 8 weeks were placed in 2 groups: a moderate running group that runs for 8 weeks with a slowly increasing running velocity - from 10 m/min for 10 min, up to 20 m/min for 1 hour (n = 10), and a control group without running (n = 10). Running takes place on a 5 lane motorized rodent treadmill (LE-8700; Panlab Harvard Apparatus). At starting point and after 8 weeks cartilage qPCR, micro-CT, histology and plasma FIB 3-2 (Artialis) was performed. Results: A total 24 km running within 8 weeks of this running protocol illustrates chondrocyte sensitivity and cartilage response to the mechanical loading (Fig. 1). At the end of the experiment, aggrecan was 1.55-fold up-regulated while MMP-2 was 2.38-fold down-regulated (P < 0.05) (Fig. 1A). The histological appearance of the chondrocytes also showed load-dependency, with more hypercellularity and hypertrophy in the running group (Fig. 1B). FIB3-2 as a plasma biomarker, interacts with the tissue inhibitor of metalloproteinase 3 (TIMP-3) and the elevated amount of FIB3-2 is expected in osteoarthritis samples. FIB3-2 is also known to be cleaved by several MMPs family including MMP-2. FIB3-2 levels dropped in the running group (from 52.7 ± 13.2 nM to 30.2 ± 8.4 nM) as compared to the control group (45.3 ± 15.0 nM to 33.3 ± 9.7 nM) (Fig. 1C). MicroCT analysis revealed an enhancement in bone response as a result of early moderate physical training where epiphysis bone parameters in the running group including thickness and bone volume fraction of subchondral bone tibia plateau as well as trabecular bone mass significantly increased compared with control animals (Fig. 2). Conclusions: Gradual increase of running up to a moderate level to 1120 m/h for one hour enhances aggrecan expression, reduces catabolic enzymatic activity of MMP-2 as well as increases subchondral bone thickness in the epiphysis area and leads to hypercellularity and hypertrophy of the chondrocytes. Conclusively, a moderate exercise program can significantly influence both bone remodeling and cartilage tissue adaptation
    • …
    corecore