51 research outputs found

    Cheating the locals: invasive mussels steal and benefit from the cooling effect of indigenous mussels

    Get PDF
    The indigenous South African mussel Perna perna gapes during periods of aerial exposure to maintain aerobic respiration. This behaviour has no effect on the body temperatures of isolated individuals, but when surrounded by conspecifics, beneficial cooling effects of gaping emerge. It is uncertain, however, whether the presence of the invasive mussel Mytilus galloprovincialis limits the ability of P. perna for collective thermoregulation. We investigated whether varying densities of P. perna and M. galloprovincialis influences the thermal properties of both natural and artificial mussel beds during periods of emersion. Using infrared thermography, body temperatures of P. perna within mixed artificial beds were shown to increase faster and reach higher temperatures than individuals in conspecific beds, indicating that the presence of M. galloprovincialis limits the group cooling effects of gaping. In contrast, body temperatures of M. galloprovincialis within mixed artificial mussel beds increased slower and exhibited lower temperatures than for individuals in beds comprised entirely of M. galloprovincialis. Interestingly, differences in bed temperatures and heating rates were largely dependent on the size of mussels, with beds comprised of larger individuals experiencing less thermal stress irrespective of species composition. The small-scale patterns of thermal stress detected within manipulated beds were not observed within naturally occurring mixed mussel beds. We propose that small-scale differences in topography, size-structure, mussel bed size and the presence of organisms encrusting the mussel shells mask the effects of gaping behaviour within natural mussel beds. Nevertheless, the results from our manipulative experiment indicate that the invasive species M. galloprovincialis steals thermal properties as well as resources from the indigenous mussel P. perna. This may have significant implications for predicting how the co-existence of these two species may change as global temperatures continue to rise

    Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis

    Get PDF
    Extreme events such as heat waves have increased in frequency and duration over the last decades. Under future climate scenarios, these discrete climatic events are expected to become even more recurrent and severe. Heat waves are particularly important on rocky intertidal shores, one of the most thermally variable and stressful habitats on the planet. Intertidal mussels, such as the blue mussel Mytilus edulis, are ecosystem engineers of global ecological and economic importance, that occasionally suffer mass mortalities. This study investigates the potential causes and consequences of a mass mortality event of M. edulis that occurred along the French coast of the eastern English Channel in summer 2018. We used an integrative, climatological and ecophysiological methodology based on three complementary approaches. We first showed that the observed mass mortality (representing 49 to 59% of the annual commercial value of local recreational and professional fisheries combined) occurred under relatively moderate heat wave conditions. This result indicates that M. edulis body temperature is controlled by non-climatic heat sources instead of climatic heat sources, as previously reported for intertidal gastropods. Using biomimetic loggers (i.e. 'robomussels'), we identified four periods of 5 to 6 consecutive days when M. edulis body temperatures consistently reached more than 30 °C, and occasionally more than 35 °C and even more than 40 °C. We subsequently reproduced these body temperature patterns in the laboratory to infer M. edulis thermal tolerance under conditions of repeated heat stress. We found that thermal tolerance consistently decreased with the number of successive daily exposures. These results are discussed in the context of an era of global change where heat events are expected to increase in intensity and frequency, especially in the eastern English Channel where the low frequency of commercially exploitable mussels already questions both their ecological and commercial sustainability.Funding Agency French Ministere de l'Enseignement Superieur et de la Recherche Region Hauts-de-France European Funds for Regional Economical Development Pierre Hubert Curien PESSOA Felloswhip Fundacao para a Ciencia e Tecnologia (FCT-MEC, Portugal) IF/01413/2014/CP1217/CT0004 National Research Foundation - South Africa 64801 South African Research Chairs Initiative (SARChI) of the Department of Science and Technology National Research Foundation - South Africainfo:eu-repo/semantics/publishedVersio

    Scientists' warning on climate change and insects

    Get PDF
    Climate warming is considered to be among the most serious of anthropogenic stresses to the environment, because it not only has direct effects on biodiversity, but it also exacerbates the harmful effects of other human-mediated threats. The associated consequences are potentially severe, particularly in terms of threats to species preservation, as well as in the preservation of an array of ecosystem services provided by biodiversity. Among the most affected groups of animals are insects—central components of many ecosystems—for which climate change has pervasive effects from individuals to communities. In this contribution to the scientists' warning series, we summarize the effect of the gradual global surface temperature increase on insects, in terms of physiology, behavior, phenology, distribution, and species interactions, as well as the effect of increased frequency and duration of extreme events such as hot and cold spells, fires, droughts, and floods on these parameters. We warn that, if no action is taken to better understand and reduce the action of climate change on insects, we will drastically reduce our ability to build a sustainable future based on healthy, functional ecosystems. We discuss perspectives on relevant ways to conserve insects in the face of climate change, and we offer several key recommendations on management approaches that can be adopted, on policies that should be pursued, and on the involvement of the general public in the protection effort

    Distance makes the difference in thermography for ecological studies

    Get PDF
    Surface temperature drives many ecological processes and infrared thermography is widely used by ecologists to measure the thermal heterogeneity of different species' habitats. However, the potential bias in temperature readings caused by distance between the surface to be measured and the camera is still poorly acknowledged. We examined the effect of distance from 0.3 to 80 m on a variety of thermal metrics (mean temperature, standard deviation, patch richness and aggregation) under various weather conditions and for different structural complexity of the studied surface types (various surfaces with vegetation). We found that distance is a key modifier of the temperature measured by a thermal infrared camera. A non-linear relationship between distance and mean temperature, standard deviation and patch richness led to a rapid under-estimation of the thermal metrics within the first 20 m and then only a slight decrease between 20 and 80 m from the object. Solar radiation also enhanced the bias with increasing distance. Therefore, surface temperatures were under-estimated as distance increased and thermal mosaics were homogenized at long distances with a much stronger bias in the warmer than the colder parts of the distributions. The under-estimation of thermal metrics due to distance was explained by atmospheric composition and the pixel size effect. The structural complexity of the surface had little effect on the surface temperature bias. Finally, we provide general guidelines for ecologists to minimize inaccuracies caused by distance from the studied surface in thermography

    Nutritional ecology of insect-plant interactions: persistent handicaps and the need for innovative approaches

    No full text
    Quantifying the flow of matter and energy in food webs is indispensable when assessing the effects of increases in atmospheric carbon dioxide, ozone level and temperature as a result of global climate change. In insect nutritional ecology, quantification of digestive and metabolic efficiency is performed using gravimetric methods in all published cases. A few cases combined these methods with calorimetric and respirometric techniques. Since 1986, methodological pitfalls and sources of error inherent to applying gravimetry as the only method to construct nutrient budgets have been addressed in a number of papers without noticeable impact on subsequent research. Especially for insects feeding on living plant tissues, the gravimetric method has inherent handicaps as it can only be used with excised plant tissues and does not allow for the dynamics of plant metabolism. We discuss the major constraints of the gravimetric method as it pertains to the physiological processes of both the insect and plant. We apply a relationship between relative metabolic rate and relative growth rate of the insect for an analysis of the gravimetric literature. The analysis reveals that gravimetry has given rise to physiologically unlikely results for poikilothermic insects. This points to serious constraints on progress in this field. We identify plant respiration as the major source of error in gravimetric studies. We establish that no single study has, thus far, determined the metabolic efficiency of a herbivore feeding on a photosynthetically active plant with its phyllosphere microclimate. We argue that a quantitative understanding of the ecophysiology and nutritional ecology of insect-plant interactions must rely on the adoption of a combination of existing and complementary methods such as the double labelled water method and infrared gas analysi

    Nutritional ecology of insect-plant interactions: persistent handicaps and the need for innovative approaches

    No full text
    Quantifying the flow of matter and energy in food webs is indispensable when assessing the effects of increases in atmospheric carbon dioxide, ozone level and temperature as a result of global climate change. In insect nutritional ecology, quantification of digestive and metabolic efficiency is performed using gravimetric methods in all published cases. A few cases combined these methods with calorimetric and respirometric techniques. Since 1986, methodological pitfalls and sources of error inherent to applying gravimetry as the only method to construct nutrient budgets have been addressed in a number of papers without noticeable impact on subsequent research. Especially for insects feeding on living plant tissues, the gravimetric method has inherent handicaps as it can only be used with excised plant tissues and does not allow for the dynamics of plant metabolism. We discuss the major constraints of the gravimetric method as it pertains to the physiological processes of both the insect and plant. We apply a relationship between relative metabolic rate and relative growth rate of the insect for an analysis of the gravimetric literature. The analysis reveals that gravimetry has given rise to physiologically unlikely results for poikilothermic insects. This points to serious constraints on progress in this field. We identify plant respiration as the major source of error in gravimetric studies. We establish that no single study has, thus far, determined the metabolic efficiency of a herbivore feeding on a photosynthetically active plant with its phyllosphere microclimate. We argue that a quantitative understanding of the ecophysiology and nutritional ecology of insect-plant interactions must rely on the adoption of a combination of existing and complementary methods such as the double labelled water method and infrared gas analysi

    On the importance of getting fine-scale temperature records near any surface

    No full text
    Commentary on “SoilTemp: a global database of near-surface temperature” by Lembrechts et al.International audienceThe pressing need to identify the ecological consequences of climate changes boosted the development of macroecological approaches as well as climatological tools. Nevertheless, the major pitfall remains that the actual climatic conditions experienced by organisms in their microhabitat and across their home range are largely ignored. In this context, Lembrechts et al. (2020) are initiating a new global database of near-surface temperatures, especially focusing on above ground (up to 2 m) and below ground soil temperatures. This approach is welcome to assess the amplitude of microclimate change around the world and across biomes. Here, I extend this approach by highlighting that fine-scale temperature heterogeneity can be large over short times frames (minutes to hours) and short distances (centimeters to meters) in forest covers. This mosaic of microclimates likely influences the response of organisms to climate change. Further, the SoilTemp database could be expanded to the other interfaces with atmosphere
    • 

    corecore