702 research outputs found
Activation volume of selected liquid crystals in the density scaling regime
In this paper, we demonstrate and thoroughly analyze the activation volumetric properties of selected liquid crystals in the nematic and crystalline E phases in comparison with those reported for glass-forming liquids. In the analysis, we have employed and evaluated two entropic models (based on either total or configurational entropies) to describe the longitudinal relaxation times of the liquid crystals in the density scaling regime. In this study, we have also exploited two equations of state: volumetric and activation volumetric ones. As a result, we have established that the activation volumetric properties of the selected liquid crystals are quite opposite to such typical properties of glass-forming materials, i.e., the activation volume decreases and the isothermal bulk modulus increases when a liquid crystal is isothermally compressed. Using the model based on the configurational entropy, we suggest that the increasing pressure dependences of the activation volume in isothermal conditions and the negative curvature of the pressure dependences of isothermal longitudinal relaxation times can be related to the formation of antiparallel doublets in the examined liquid crystals. A similar pressure effect on relaxation dynamics may be also observed for other material groups in case of systems, the molecules of which form some supramolecular structures
Operating manual for the RRL 8 channel data logger
A data collection device which takes measurements from external sensors at user specified time intervals is described. Three sensor ports are dedicated to temperature, air pressure, and dew point. Five general purpose sensor ports are provided. The user specifies when the measurements are recorded as well as when the information is read or stored in a minicomputer or a paper tape
Impact of alternative solid state forms and specific surface area of high-dose, hydrophilic active pharmaceutical ingredients on tabletability
YesIn order to investigate the effect of using different
solid state forms and specific surface area (TBET) of active
pharmaceutical ingredients on tabletability and dissolution
performance, the mono- and dihydrated crystalline forms of
chlorothiazide sodium and chlorothiazide potassium (CTZK)
salts were compared to alternative anhydrous and amorphous
forms, as well as to amorphous microparticles of chlorothiazide
sodium and potassium which were produced by spray drying and
had a large specific surface area. The tablet hardness and tensile
strength, porosity, and specific surface area of single-component,
convex tablets prepared at different compression pressures were characterized. Results confirmed the complexity of the
compressibility mechanisms. In general it may be concluded that factors such as solid-state form (crystalline vs amorphous), type
of hydration (presence of interstitial molecules of water, dehydrates), or specific surface area of the material have a direct impact
on the tabletability of the powder. It was observed that, for powders of the same solid state form, those with a larger specific
surface area compacted well, and better than powders of a lower surface area, even at relatively low compression pressures.
Compacts prepared at lower compression pressures from high surface area porous microparticles presented the shortest times to
dissolve, when compared with compacts made of equivalent materials, which had to be compressed at higher compression
pressures in order to obtain satisfactory compacts. Therefore, materials composed of nanoparticulate microparticles (NPMPs)
may be considered as suitable for direct compaction and possibly for inclusion in tablet formulations as bulking agents, APIs,
carriers, or binders due to their good compactibility performanceSolid State Pharmaceutical Cluster (SSPC), supported by Science Foundation Ireland under Grant No. 07/SRC/B1158
Does the Johari-Goldstein β-Relaxation Exist in Polypropylene Glycols?
Secondary relaxations with properties closely related to the ι-relaxation have fundamental importance in glass-forming substances including polymers. To distinguish these secondary relaxations from those involving intramolecular degrees of freedom, they are called the Johari-Goldstein (JG) β-relaxations. Acting as the precursor of the ι-relaxation, the JG β-relaxation is supposedly ubiquitous in all glass-formers, a thesis supported by experiments on a variety of glass-formers. Notwithstanding, the JG β-relaxation has not been identified definitively in the hydroxyl-terminated polypropylene glycols (PPGs) with various molecular weights, despite these polymers have been intensively studied experimentally in the last several decades. The difficulty of finding the JG β-relaxation is due to the presence of a faster intramolecular -relaxation and a slower relaxation originating from residual water. This is demonstrated in two recent papers by Gainaru et al. Macromolecules 2010, 43, 1907, and Kaminski et al. Macromolecules 2013, 46, 1973. In this paper, we show the presence of the JG β-relaxation in the PPGs from the dielectric relaxation data by using the time honored criterion derived from the coupling model in conjunction with the observed anomalous temperature dependence of the -relaxation caused by merging with the JG β-relaxation, and new experimental data obtained by applying pressure on PPG4000 before and after drying the sample to remove the residual water. From the results, we conclude that the behavior of the PPGs is no different from the other glass-formers as far as the omnipresence of the JG β-relaxation is concerned
Molecular dynamics and physical stability of amorphous nimesulide drug and its binary drug-polymer systems
yesIn this paper we study the effectiveness of three well known polymers: inulin, Soluplus and PVP in stabilizing amorphous form of nimesulide (NMS) drug. The re-crystallization tendency of pure drug as well as measured drug-polymer systems were examined at isothermal conditions by using broadband dielectric spectroscopy (BDS), and at non-isothermal conditions by differential scanning calorimetry (DSC). Our investigation has shown that the crystallization half-life time of pure NMS at 328 K is equal to 33 minutes. We found that this time can be prolonged to 40 years after adding to NMS 20% of PVP polymer. This polymer proved to be the best NMSâs stabilizer, while the worst stabilization effect was found after adding the inulin to NMS. Additionally, our DSC, BDS and FTIR studies indicate that for suppression of NMSâs re-crystallization in NMS-PVP system, the two mechanisms are responsible: the polymeric steric hindrances as well as the antiplastization effect excerted by the excipient.The authors J.K., Z.W., K.G. and M.P., are grateful for the financial support received within the Project No. 2015/16/W/NZ7/00404 (SYMFONIA 3) from the National Science Centre, Poland. H.M. and L.T. are supported by Science Foundation Ireland under grant No. 12/RC/2275 (Synthesis and Solid State Pharmaceuticals Centre)
Dielectric relaxation behavior in antiferroelectric metal organic framework [(CH3)2NH2][FeIIIFeII(HCOO)6] single crystals
The fundamental aspects of the relaxation dynamics in niccolite-type, mixed valence metalâorganic framework, multiferroic [(CH3)2NH2][Fe3+Fe2+(HCOO)6] single crystals have been reported using dielectric relaxation spectroscopy covering eight decades in frequency (10â2 ⤠f ⤠106) in the temperature range 120 K ⤠T ⤠250 K. The compound shows antiferroelectric to paraelectric phase transition near T = 154 K with the relaxor nature of electric ordering. The temperature dependent dielectric response in modulus representation indicates three relaxation processes within the experimental window. The variable range hopping model of small polarons explains the bulk non-Debye type conductivity relaxation. The fastest relaxation with activation energy Ea = 0.17 eV is related to progressive freezing of the reorientation motions of DMA+ cations. X-ray diffraction data revealed that complete freezing of orientational and translational motions of DMA+ cations occurs well below phase transition temperature. These experimental observations are fundamentally important for the theoretical explanation of relaxation dynamics in niccolite-type metalâorganic frameworks
Intracellular microrheology of motile Amoeba proteus
The motility of motile Amoeba proteus was examined using the technique of
passive particle tracking microrheology, with the aid of newly-developed
particle tracking software, a fast digital camera and an optical microscope. We
tracked large numbers of endogeneous particles in the amoebae, which displayed
subdiffusive motion at short time scales, corresponding to thermal motion in a
viscoelastic medium, and superdiffusive motion at long time scales due to the
convection of the cytoplasm. Subdiffusive motion was characterised by a
rheological scaling exponent of 3/4 in the cortex, indicative of the
semiflexible dynamics of the actin fibres. We observed shear-thinning in the
flowing endoplasm, where exponents increased with increasing flow rate; i.e.
the endoplasm became more fluid-like. The rheology of the cortex is found to be
isotropic, reflecting an isotropic actin gel. A clear difference was seen
between cortical and endoplasmic layers in terms of both viscoelasticity and
flow velocity, where the profile of the latter is close to a Poiseuille flow
for a Newtonian fluid
Retrotransposition and mutation events yield Rap1 GTPases with differential signalling capacity
<p>Abstract</p> <p>Background</p> <p>Retrotransposition of mRNA transcripts gives occasionally rise to functional retrogenes. Through acquiring tempero-spatial expression patterns distinct from their parental genes and/or functional mutations in their coding sequences, such retrogenes may in principle reshape signalling networks.</p> <p>Results</p> <p>Here we present evidence for such a scenario, involving retrogenes of Rap1 belonging to the Ras family of small GTPases. We identified two murine and one human-specific retrogene of Rap1A and Rap1B, which encode proteins that differ by only a few amino acids from their parental Rap1 proteins. Markedly, human hRap1B-retro and mouse mRap1A-retro1 acquired mutations in the 12<sup>th </sup>and 59<sup>th </sup>amino acids, respectively, corresponding to residues mutated in constitutively active oncogenic Ras proteins. Statistical and structural analyses support a functional evolution scenario, where Rap1 isoforms of retrogenic origin are functionally distinct from their parental proteins. Indeed, all retrogene-encoded GTPases have an increased GTP/GDP binding ratio <it>in vivo</it>, indicating that their conformations resemble that of active GTP-bound Rap1. We furthermore demonstrate that these three Rap1 isoforms exhibit distinct affinities for the Ras-binding domain of RalGDS. Finally, when tested for their capacity to induce key cellular processes like integrin-mediated cell adhesion or cell spreading, marked differences are seen.</p> <p>Conclusions</p> <p>Together, these data lend strong support for an evolution scenario, where retrotransposition and subsequent mutation events generated species-specific Rap1 isoforms with differential signaling potential. Expression of the constitutively active human Rap1B-retro in cells like those derived from Ramos Burkitt's lymphoma and bone marrow from a patient with myelodysplastic syndrome (MDS) warrants further investigation into its role in disease development.</p
- âŚ