22 research outputs found

    Effective and safe proton pump inhibitor therapy in acid-related diseases – A position paper addressing benefits and potential harms of acid suppression

    Full text link

    Cyclooxygenases and the cardiovascular system.

    Get PDF
    Cyclooxygenase (COX)-1 and COX-2 are centrally important enzymes within the cardiovascular system with a range of diverse, sometimes opposing, functions. Through the production of thromboxane, COX in platelets is a pro-thrombotic enzyme. By contrast, through the production of prostacyclin, COX in endothelial cells is antithrombotic and in the kidney regulates renal function and blood pressure. Drug inhibition of COX within the cardiovascular system is important for both therapeutic intervention with low dose aspirin and for the manifestation of side effects caused by nonsteroidal anti-inflammatory drugs. This review focuses on the role that COX enzymes and drugs that act on COX pathways have within the cardiovascular system and provides an in-depth resource covering COX biology and pharmacology. The review goes on to consider the role of COX in both discrete cardiovascular locations and in associated organs that contribute to cardiovascular health. We discuss the importance of, and strategies to manipulate the thromboxane: prostacyclin balance. Finally within this review the authors discuss testable COX-2-hypotheses intended to stimulate debate and facilitate future research and therapeutic opportunities within the field

    Two days National Conference -VISHWATECH 2014 Signature Anaysis For Small Delay Defect Detection Delay Measurement Techniques

    No full text
    Abstract -This paper presents a delay measurement technique using signature analysis, and a scan design for the proposed delay measurement technique to detect small-delay defects. The proposed measurement technique measures the delay of the explicitly sensitized paths with the resolution of the on-chip variable clock generator. The proposed scan design realizes complete on-chip delay measurement in short measurement time using the proposed delay measurement technique and extra latches for storing the test vectors. The evaluation with Rohm 0.18-m process shows that the measurement time is 67.8% reduced compared with that of the delay measurement with standard scan design on average. The area overhead is 23.4% larger than that of the delay measurement architecture using standard scan design and the difference of the area overhead between enhanced scan design and the proposed method is 7.4% on average. The data volume is 2.2 times of that of test set for normal testing on average

    Not Available

    No full text
    Not AvailableHigh cholesterol is known to negatively affect uterine contractility in ex vivo conditions. The aim of the present study was to reveal the effect of in vivo hypercholesterolemia on spontaneous and oxytocin-induced uterine contractility in late pregnant mouse uterus. Female Swiss albino mice were fed with high cholesterol (HC) diet (0.5% sodium cholate, 1.25% cholesterol and 15% fat) for 6 weeks and then throughout the gestation period after mating. On day 19 of gestation, serum cholesterol level was increased more than 3-fold while triglycerides level was reduced in HC diet-fed animals as compared to control animals fed with a standard diet. In tension experiments, neither the mean integral tension of spontaneous contractility nor the response to CaCl2 in high K+-depolarized tissues was altered, but the oxytocin-induced concentration-dependent contractile response in uterine strips was attenuated in hypercholesterolemic mice as compared to control. Similarly, hypercholesterolemia dampened concentration-dependent uterine contractions elicited by a GNAQ protein activator, Pasteurella multocida toxin. However, it had no effect on endogenous oxytocin level either in plasma or in uterine tissue. It also did not affect the prostaglandin release in oxytocin-stimulated tissues. Western blot data showed a significant increase in caveolin-1 and GRK6 proteins but decline in oxytocin receptor, GNAQ and RHOA protein expressions in hypercholesterolemic mouse uterus. The results of the present study suggest that hypercholesterolemia may attenuate the uterotonic action of oxytocin in late pregnancy by causing downregulation of oxytocin receptors and suppressing the signaling efficacy through GNAQ and RHOA proteins.Not Availabl
    corecore