81 research outputs found
Asperity characteristics of the Olami-Feder-Christensen model of earthquakes
Properties of the Olami-Feder-Christensen (OFC) model of earthquakes are
studied by numerical simulations. The previous study indicated that the model
exhibits ``asperity''-like phenomena, {\it i.e.}, the same region ruptures many
times near periodically [T.Kotani {\it et al}, Phys. Rev. E {\bf 77}, 010102
(2008)]. Such periodic or characteristic features apparently coexist with
power-law-like critical features, {\it e.g.}, the Gutenberg-Richter law
observed in the size distribution. In order to clarify the origin and the
nature of the asperity-like phenomena, we investigate here the properties of
the OFC model with emphasis on its stress distribution. It is found that the
asperity formation is accompanied by self-organization of the highly
concentrated stress state. Such stress organization naturally provides the
mechanism underlying our observation that a series of asperity events repeat
with a common epicenter site and with a common period solely determined by the
transmission parameter of the model. Asperity events tend to cluster both in
time and in space
Simulation study of spatio-temporal correlations of earthquakes as a stick-slip frictional instability
Spatio-temporal correlations of earthquakes are studied numerically on the
basis of the one-dimensional spring-block (Burridge-Knopoff) model. As large
events approach, the frequency of smaller events gradually increases, while,
just before the mainshock, it is dramatically suppressed in a close vicinity of
the epicenter of the upcoming mainshock, a phenomenon closely resembling the
``Mogi doughnut'
Statistical properties of SGR 1900+14 bursts
We study the statistics of soft gamma repeater (SGR) bursts, using a data
base of 187 events detected with BATSE and 837 events detected with RXTE PCA,
all from SGR 1900+14 during its 1998-1999 active phase. We find that the
fluence or energy distribution of bursts is consistent with a power law of
index 1.66, over 4 orders of magnitude. This scale-free distribution resembles
the Gutenberg-Richter Law for earthquakes, and gives evidence for
self-organized criticality in SGRs. The distribution of time intervals between
successive bursts from SGR 1900+14 is consistent with a log-normal
distribution. There is no correlation between burst intensity and the waiting
times till the next burst, but there is some evidence for a correlation between
burst intensity and the time elapsed since the previous burst. We also find a
correlation between the duration and the energy of the bursts, but with
significant scatter. In all these statistical properties, SGR bursts resemble
earthquakes and solar flares more closely than they resemble any known
accretion-powered or nuclear-powered phenomena. Thus our analysis lends support
to the hypothesis that the energy source for SGR bursts is internal to the
neutron star, and plausibly magnetic.Comment: 11 pages, 4 figures, accepted for publication in ApJ
The occupation of a box as a toy model for the seismic cycle of a fault
We illustrate how a simple statistical model can describe the quasiperiodic
occurrence of large earthquakes. The model idealizes the loading of elastic
energy in a seismic fault by the stochastic filling of a box. The emptying of
the box after it is full is analogous to the generation of a large earthquake
in which the fault relaxes after having been loaded to its failure threshold.
The duration of the filling process is analogous to the seismic cycle, the time
interval between two successive large earthquakes in a particular fault. The
simplicity of the model enables us to derive the statistical distribution of
its seismic cycle. We use this distribution to fit the series of earthquakes
with magnitude around 6 that occurred at the Parkfield segment of the San
Andreas fault in California. Using this fit, we estimate the probability of the
next large earthquake at Parkfield and devise a simple forecasting strategy.Comment: Final version of the published paper, with an erratum and an
unpublished appendix with some proof
Probabilities of Large Earthquakes in the San Francisco Bay Region, California
In 1987 a Working Group on California Earthquake Probabilities was organized by the U.S. Geological
Survey at the recommendation of the National Earthquake Prediction Evaluation Council (NEPEC). The
membership included representatives from private industry, academia, and the U.S. Geological Survey. The
Working Group computed long-term probabilities of earthquakes along the major faults of the San Andreas
fault system on the basis of consensus interpretations of information then available. Faults considered by the
Working Group included the San Andreas fault proper, the San Jacinto and Imperial-faults of southern
California, and the Hayward fault of northern California. The Working Group issued a final report of its
findings in 1988 (Working Group, 1988) that was reviewed and endorsed by NEPEC.
As a consequence of the magnitude 7.1 Loma Prieta, California, earthquake of October 17, 1989, a
second Working Group on California Earthquake Probabilities was organized under the auspices of NEPEC.
Its charge was to review and, as necessary, revise the findings of the 1988 report on the probability of large
earthquakes in the San Francisco Bay region. In particular, the Working Group was requested to examine the
probabilities of large earthquakes in the context of new interpretations or physical changes resulting from the
Loma Prieta earthquake. In addition, it was to consider new information pertaining to the San Andreas and other
faults in the region obtained subsequent to the release of the 1988 report. Insofar as modified techniques and
improved data have been used in this study, the same approach might also, of course, modify the probabilities
for southern California. This reevaluation has, however, been specifically limited to the San Francisco Bay
region.
This report is intended to summarize the collective knowledge and judgments of a diverse group of
earthquake scientists to assist in formulation of rational earthquake policies. A considerable body of information
about active faults in the San Francisco Bay region leads to the conclusion that major earthquakes are likely
within the next tens of years. Several techniques can be used to compute probabilities of future earthquakes,
although there are uncertainties about the validity of specific assumptions or models that must be made when
applying these techniques. The body of this report describes the data and detailed assumptions that lead to
specific probabilities for different fault segments. Additional data and future advances in our understanding of
earthquake physics may alter the way that these probabilities are estimated. Even though this uncertainty must
be acknowledged, we emphasize that the findings of this report are supported by other lines of argument and
are consistent with our best understanding of the likelihood for the occurrence of earthquakes in the San
Francisco Bay region
Dragon-kings: mechanisms, statistical methods and empirical evidence
This introductory article presents the special Discussion and Debate volume
"From black swans to dragon-kings, is there life beyond power laws?" published
in Eur. Phys. J. Special Topics in May 2012. We summarize and put in
perspective the contributions into three main themes: (i) mechanisms for
dragon-kings, (ii) detection of dragon-kings and statistical tests and (iii)
empirical evidence in a large variety of natural and social systems. Overall,
we are pleased to witness significant advances both in the introduction and
clarification of underlying mechanisms and in the development of novel
efficient tests that demonstrate clear evidence for the presence of
dragon-kings in many systems. However, this positive view should be balanced by
the fact that this remains a very delicate and difficult field, if only due to
the scarcity of data as well as the extraordinary important implications with
respect to hazard assessment, risk control and predictability.Comment: 20 page
The 1957 great Aleutian earthquake
The 9 March 1957 Aleutian earthquake has been estimated as the third largest earthquake this century and has the longest aftershock zone of any earthquake ever recordedâ1200 km. However, due to a lack of high-quality seismic data, the actual source parameters for this earthquake have been poorly determined. We have examined all the available waveform data to determine the seismic moment, rupture area, and slip distribution. These data include body, surface and tsunami waves. Using body waves, we have estimated the duration of significant moment release as 4 min. From surface wave analysis, we have determined that significant moment release occurred only in the western half of the aftershock zone and that the best estimate for the seismic moment is 50â100Ă10 20 Nm. Using the tsunami waveforms, we estimated the source area of the 1957 tsunami by backward propagation. The tsunami source area is smaller than the aftershock zone and is about 850 km long. This does not include the Unalaska Island area in the eastern end of the aftershock zone, making this area a possible seismic gap and a possible site of a future large or great earthquake. We also inverted the tsunami waveforms for the slip distribution. Slip on the 1957 rupture zone was highest in the western half near the epicenter. Little slip occurred in the eastern half. The moment is estimated as 88Ă10 20 Nm, or M w =8.6, making it the seventh largest earthquake during the period 1900 to 1993. We also compare the 1957 earthquake to the 1986 Andreanof Islands earthquake, which occurred within a segment of the 1957 rupture area. The 1986 earthquake represents a rerupturing of the major 1957 asperity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43159/1/24_2004_Article_BF00875966.pd
Rupture process of large earthquakes in the northern Mexico subduction zone
The Cocos plate subducts beneath North America at the Mexico trench. The northernmost segment of this trench, between the Orozco and Rivera fracture zones, has ruptured in a sequence of five large earthquakes from 1973 to 1985; the Jan. 30, 1973 Colima event ( M s 7.5) at the northern end of the segment near Rivera fracture zone; the Mar. 14, 1979 Petatlan event ( M s 7.6) at the southern end of the segment on the Orozco fracture zone; the Oct. 25, 1981 Playa Azul event ( M s 7.3) in the middle of the Michoacan âgapâ; the Sept. 19, 1985 Michoacan mainshock ( M s 8.1); and the Sept. 21, 1985 Michoacan aftershock ( M s 7.6) that reruptured part of the Petatlan zone. Body wave inversion for the rupture process of these earthquakes finds the best: earthquake depth; focal mechanism; overall source time function; and seismic moment, for each earthquake. In addition, we have determined spatial concentrations of seismic moment release for the Colima earthquake, and the Michoacan mainshock and aftershock. These spatial concentrations of slip are interpreted as asperities; and the resultant asperity distribution for Mexico is compared to other subduction zones. The body wave inversion technique also determines the Moment Tensor Rate Functions ; but there is no evidence for statistically significant changes in the moment tensor during rupture for any of the five earthquakes. An appendix describes the Moment Tensor Rate Functions methodology in detail.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43169/1/24_2004_Article_BF00875970.pd
- âŠ