87 research outputs found

    A host signature based on TRAIL, IP-10, and CRP for reducing antibiotic overuse in children by differentiating bacterial from viral infections: a prospective, multicentre cohort study

    Get PDF
    Objectives: Identifying infection aetiology is essential for appropriate antibiotic use. Previous studies have shown that a host-protein signature consisting of TNF-related apoptosis-induced ligand (TRAIL), interferon-γ-induced protein-10 (IP-10), and C-reactive protein (CRP) can accurately differentiate bacterial from viral infections. Methods: This prospective, multicentre cohort study, entitled AutoPilot-Dx, aimed to validate signature performance and to estimate its potential impact on antibiotic use across a broad paediatric population (>90 days to 18 years) with respiratory tract infections, or fever without source, at emergency departments and wards in Italy and Germany. Infection aetiology was adjudicated by experts based on clinical and laboratory investigations, including multiplex PCR and follow-up data. Results: In total, 1140 patients were recruited (February 2017–December 2018), of which 1008 met the eligibility criteria (mean age 3.5 years, 41.9% female). Viral and bacterial infections were adjudicated for 628 (85.8%) and 104 (14.2%) children, respectively; 276 patients were assigned an indeterminate reference standard outcome. For the 732 children with reference standard aetiology, the signature discriminated bacterial from viral infections with a sensitivity of 93.7% (95%CI 88.7–98.7), a specificity of 94.2% (92.2–96.1), positive predictive value of 73.0% (65.0–81.0), and negative predictive value of 98.9% (98.0–99.8); in 9.8% the test results were equivocal. The signature performed consistently across different patient subgroups and detected bacterial immune responses in viral PCR-positive patients. Conclusions: The findings validate the high diagnostic performance of the TRAIL/IP-10/CRP signature in a broad paediatric cohort, and support its potential to reduce antibiotic overuse in children with viral infections

    Pathogenicity and Impact of HLA Class I Alleles in Aplastic Anemia Patients of Different Ethnicities

    Get PDF
    Acquired aplastic anemia (AA) is caused by autoreactive T cell-mediated destruction of early hematopoietic cells. Somatic loss of human leukocyte antigen (HLA) class I alleles was identified as a mechanism of immune escape in surviving hematopoietic cells of some patients with AA. However, pathogenicity, structural characteristics, and clinical impact of specific HLA alleles in AA remain poorly understood. Here, we evaluated somatic HLA loss in 505 patients with AA from 2 multi-institutional cohorts. Using a combination of HLA mutation frequencies, peptide-binding structures, and association with AA in an independent cohort of 6,323 patients from the National Marrow Donor Program, we identified 19 AA risk alleles and 12 non-risk alleles and established a potentially novel AA HLA pathogenicity stratification. Our results define pathogenicity for the majority of common HLA-A/B alleles across diverse populations. Our study demonstrates that HLA alleles confer different risks of developing AA, but once AA develops, specific alleles are not associated with response to immunosuppression or transplant outcomes. However, higher pathogenicity alleles, particularly HLA-B*14:02, are associated with higher rates of clonal evolution in adult patients with AA. Our study provides insights into the immune pathogenesis of AA, opening the door to future autoantigen identification and improved understanding of clonal evolution in AA

    Genes Dev

    No full text
    Ligand-induced down-regulation of two growth factor receptors, EGF receptor (ErbB-1) and ErbB-3, correlates with differential ability to recruit c-Cbl, whose invertebrate orthologs are negative regulators of ErbB. We report that ligand-induced degradation of internalized ErbB-1, but not ErbB-3, is mediated by transient mobilization of a minor fraction of c-Cbl into ErbB-1-containing endosomes. This recruitment depends on the receptor's tyrosine kinase activity and an intact carboxy-terminal region. The alternative fate is recycling of internalized ErbBs to the cell surface. Cbl-mediated receptor sorting involves covalent attachment of ubiquitin molecules, and subsequent lysosomal and proteasomal degradation. The oncogenic viral form of Cbl inhibits down-regulation by shunting endocytosed receptors to the recycling pathway. These results reveal an endosomal sorting machinery capable of controlling the fate, and, hence, signaling potency, of growth factor receptors

    Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases

    No full text
    When appended to the epidermal growth factor receptor ( EGFR), ubiquitin serves as a sorting signal for lysosomal degradation. Here we demonstrate that the ubiquitin ligase of EGFR, namely c-Cbl, also mediates receptor modification with the ubiquitin-like molecule Nedd8. EGF stimulates receptor neddylation, which enhances subsequent ubiquitylation, as well as sorting of EGFR for degradation. Multiple lysine residues, located within the tyrosine kinase domain of EGFR, serve as attachment sites for Nedd8. A set of clathrin coat-associated binders of ubiquitin also bind Nedd8, but they undergo ubiquitylation, not neddylation. We discuss the emerging versatility of the concerted action of ubiquitylation and neddylation in the process that desensitizes growth factor-activated receptor tyrosine kinases
    • …
    corecore