423 research outputs found
Roadmap on the theoretical work of BinaMIcS
We review the different theoretical challenges concerning magnetism in
interacting binary or multiple stars that will be studied in the BinaMIcS
(Binarity and Magnetic Interactions in various classes of Stars) project during
the corresponding spectropolarimetric Large Programs at CFHT and TBL. We
describe how completely new and innovative topics will be studied with BinaMIcS
such as the complex interactions between tidal flows and stellar magnetic
fields, the MHD star-star interactions, and the role of stellar magnetism in
stellar formation and vice versa. This will strongly modify our vision of the
evolution of interacting binary and multiple stars.Comment: 2 pages, proceeding of IAUS 302 Magnetic fields throughout stellar
evolution, correct list of author
How unique is Plaskett's star? A search for organized magnetic fields in short period, interacting or post-interaction massive binary systems
Amongst O-type stars with detected magnetic fields, the fast rotator in the
close binary called Plaskett's star shows a variety of unusual properties.
Since strong binary interactions are believed to have occurred in this system,
one may wonder about their potential role in generating magnetic fields. Stokes
V spectra collected with the low-resolution FORS2 and high-resolution ESPaDOnS
and Narval spectropolarimeters were therefore used to search for magnetic
fields in 15 interacting or post-interaction massive binaries. No magnetic
field was detected in any of them, with 0G always being within 2sigma of the
derived values. For 17 out of 25 stars in the systems observed at
high-resolution, the 90% upper limit on the individual dipolar fields is below
the dipolar field strength of Plaskett's secondary; a similar result is found
for five out of six systems observed at low resolution. If our sample is
considered to form a group of stars sharing similar magnetic properties, a
global statistical analysis results in a stringent upper limit of ~200G on the
dipolar field strength. Moreover, the magnetic incidence rate in the full
sample of interacting or post-interaction systems (our targets + Plaskett's
star) is compatible with that measured from large surveys, showing that they
are not significantly different from the general O-star population. These
results suggest that binary interactions play no systematic role in the
magnetism of such massive systems.Comment: 11 pages, accepted for publication in MNRA
Discovery Of A Magnetic Field In The Rapidly Rotating O-Type Secondary Of The Colliding-Wind Binary HD 47129 (Plaskett\u27s Star)
We report the detection of a strong, organized magnetic field in the secondary component of the massive O8III/I+O7.5V/III double-lined spectroscopic binary system HD 47129 (Plaskett\u27s star) in the context of the Magnetism in Massive Stars survey. Eight independent Stokes V observations were acquired using the Echelle SpectroPolarimetric Device for the Observations of Stars (ESPaDOnS) spectropolarimeter at the Canada-France-Hawaii Telescope and the Narval spectropolarimeter at the Telescope Bernard Lyot. Using least-squares deconvolution we obtain definite detections of signal in Stokes V in three observations. No significant signal is detected in the diagnostic null (N) spectra. The Zeeman signatures are broad and track the radial velocity of the secondary component; we therefore conclude that the rapidly rotating secondary component is the magnetized star. Correcting the polarized spectra for the line and continuum of the (sharp-lined) primary, we measured the longitudinal magnetic field from each observation. The longitudinal field of the secondary is variable and exhibits extreme values of -810 +/- 150 and +680 +/- 190 G, implying a minimum surface dipole polar strength of 2850 +/- 500 G. In contrast, we derive an upper limit (3 sigma) to the primary\u27s surface magnetic field of 230 G. The combination of a strong magnetic field and rapid rotation leads us to conclude that the secondary hosts a centrifugal magnetosphere fed through a magnetically confined wind. We revisit the properties of the optical line profiles and X-ray emission - previously interpreted as a consequence of colliding stellar winds - in this context. We conclude that HD 47129 represents a heretofore unique stellar system - a close, massive binary with a rapidly rotating, magnetized component - that will be a rich target for further study
The BinaMIcS project: understanding the origin of magnetic fields in massive stars through close binary systems
It is now well established that a fraction of the massive (M>8 Msun) star
population hosts strong, organised magnetic fields, most likely of fossil
origin. The details of the generation and evolution of these fields are still
poorly understood. The BinaMIcS project takes an important step towards the
understanding of the interplay between binarity and magnetism during the
stellar formation and evolution, and in particular the genesis of fossil
fields, by studying the magnetic properties of close binary systems. The
components of such systems are most likely formed together, at the same time
and in the same environment, and can therefore help us to disentangle the role
of initial conditions on the magnetic properties of the massive stars from
other competing effects such as age or rotation. We present here the main
scientific objectives of the BinaMIcS project, as well as preliminary results
from the first year of observations from the associated ESPaDOnS and Narval
spectropolarimetric surveys.Comment: To appear in New Windows on Massive Stars, proceedings of the IAU
Symposium 30
Probing the internal magnetic field of slowly pulsating B-stars through g modes
We suggest that high-order g modes can be used as a probe of the internal
magnetic field of SPB (slowly pulsating B) stars. The idea is based on earlier
work by the authors which analytically investigated the effect of a vertical
magnetic field on p and g modes in a plane-parallel isothermal stratified
atmosphere. It was found that even a weak field can significantly shift the
g-mode frequencies -- the effect increases with mode order. In the present
study we adopt the classical perturbative approach to estimate the internal
field of a 4 solar mass SPB star by looking at its effect on a low-degree
() and high-order () g mode with a period of about 1.5 d. We find
that a polar field strength of about 110 kG on the edge of the convective core
is required to produce a frequency shift of 1%. Frequency splittings of that
order have been observed in several SPB variables, in some cases clearly too
small to be ascribed to rotation. We suggest that they may be due to a poloidal
field with a strength of order 100 kG, buried in the deep interior of the star.Comment: 4 pages, 2 figures (to appear in Astronomy & Astrophysics
Be Stars: Rapidly Rotating Pulsators
I will show that Be stars are, without exception, a class of rapidly rotating
stars, which are in the majority of cases pulsating stars as well, while none
of them does possess a large scale (i.e. with significant dipolar contribution)
magnetic field.Comment: Review talk given at "XX Stellar Pulsation Conference Series: Impact
of new instrumentation and new insights in stellar pulsations", Granada, 5-9
September 2011, in press in AIP Conf. Se
Discovery of Magnetic Fields in Slowly Pulsating B Stars
We present the first observations and conclusions of a magnetic survey with FORS 1 at the VLT of a sample of 25 Slowly Pulsating B stars. A clear mean longitudinal magnetic field of the order of a few hundred Gauss was detected in eleven SPBs. Among them several SPBs show a magnetic field that varies in time. It becomes clear that SPBs cannot be regarded anymore as non-magnetic stars
- …
