269 research outputs found

    A Wavelet-Based Approach To Monitoring Parkinson's Disease Symptoms

    Full text link
    Parkinson's disease is a neuro-degenerative disorder affecting tens of millions of people worldwide. Lately, there has been considerable interest in systems for at-home monitoring of patients, using wearable devices which contain inertial measurement units. We present a new wavelet-based approach for analysis of data from single wrist-worn smart-watches, and show high detection performance for tremor, bradykinesia, and dyskinesia, which have been the major targets for monitoring in this context. We also discuss the implication of our controlled-experiment results for uncontrolled home monitoring of freely behaving patients.Comment: ICASSP 201

    Physical and chemical properties, pectinases activity, and cell wall pectin of Acidulus, Momordica, Inodorus and Cantalupensis melons with different ripening degree at harvest

    Get PDF
    The objective of the present study was to evaluate the physical and chemical changes, pectinases activity, and cell wall pectin in melon varieties Acidulus (access 16), Momordica (access 2), Inodorus (cv. ‘Iracema’) and Cantalupensis (cv. ‘Olympic’), in the relation of ripening degree at harvest. Melon fruits were planted and evaluated with different ripening degree at harvest, from 15 to 35 days after anthesis (DAA). The fruits, arranged in a completely randomized design, had been evaluated on the harvest days to physical and chemical characteristics. We evaluate pectin methylesterase, polygalacturonase, beta-galactosidase, and pectin contents (water-soluble, chelate soluble, and sodium carbonate soluble). The ideal harvest for each melon was, 35 days after anthesis for cv ‘Iracema’, 30 days after anthesis for cv. ‘Olympic’, 30 days after anthesis for access 16, and 20 days after anthesis for access 2. High pulp firmness of access 16 is associated with the high levels of sodium carbonate soluble pectin and low levels of polygalacturonase and beta-galactosidase activity. Momordica melon fruit cracking is related to the high levels of pectinases activity, as well as pectin degradation

    Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application

    Get PDF
    For several decades, multipotent mesenchymal stromal cells (MSCs) have been extensively studied for their therapeutic potential across a wide range of diseases. In the preclinical setting, MSCs demonstrate consistent ability to promote tissue healing, down-regulate excessive inflammation and improve outcomes in animal models. Several proposed mechanisms of action have been posited and demonstrated across an array of in vitro models. However, translation into clinical practice has proven considerably more difficult. A number of prominent well-funded late-phase clinical trials have failed, thus calling out for new efforts to optimize product delivery in the clinical setting. In this review, we discuss novel topics critical to the successful translation of MSCs from pre-clinical to clinical applications. In particular, we focus on the major routes of cell delivery, aspects related to hemocompatibility, and potential safety concerns associated with MSC therapy in the different settings

    The Iterative Signature Algorithm for the analysis of large scale gene expression data

    Full text link
    We present a new approach for the analysis of genome-wide expression data. Our method is designed to overcome the limitations of traditional techniques, when applied to large-scale data. Rather than alloting each gene to a single cluster, we assign both genes and conditions to context-dependent and potentially overlapping transcription modules. We provide a rigorous definition of a transcription module as the object to be retrieved from the expression data. An efficient algorithm, that searches for the modules encoded in the data by iteratively refining sets of genes and conditions until they match this definition, is established. Each iteration involves a linear map, induced by the normalized expression matrix, followed by the application of a threshold function. We argue that our method is in fact a generalization of Singular Value Decomposition, which corresponds to the special case where no threshold is applied. We show analytically that for noisy expression data our approach leads to better classification due to the implementation of the threshold. This result is confirmed by numerical analyses based on in-silico expression data. We discuss briefly results obtained by applying our algorithm to expression data from the yeast S. cerevisiae.Comment: Latex, 36 pages, 8 figure

    Large CO\u3csub\u3e2\u3c/sub\u3e and CH\u3csub\u3e4\u3c/sub\u3e emissions from polygonal tundra during spring thaw in northern Alaska

    Get PDF
    The few prethaw observations of tundra carbon fluxes suggest that there may be large spring releases, but little is known about the scale and underlying mechanisms of this phenomenon. To address these questions, we combined ecosystem eddy flux measurements from two towers near Barrow, Alaska, with mechanistic soil-core thawing experiment. During a 2 week period prior to snowmelt in 2014, large fluxes were measured, reducing net summer uptake of CO2 by 46% and adding 6% to cumulative CH4 emissions. Emission pulses were linked to unique rain-on-snow events enhancing soil cracking. Controlled laboratory experiment revealed that as surface ice thaws, an immediate, large pulse of trapped gases is emitted. These results suggest that the Arctic CO2 and CH4 spring pulse is a delayed release of biogenic gas production from the previous fall and that the pulse can be large enough to offset a significant fraction of the moderate Arctic tundra carbon sink

    Excitation of Small Quantum Systems by High-Frequency Fields

    Full text link
    The excitation by a high frequency field of multi--level quantum systems with a slowly varying density of states is investigated. A general approach to study such systems is presented. The Floquet eigenstates are characterized on several energy scales. On a small scale, sharp universal quasi--resonances are found, whose shape is independent of the field parameters and the details of the system. On a larger scale an effective tight--binding equation is constructed for the amplitudes of these quasi--resonances. This equation is non--universal; two classes of examples are discussed in detail.Comment: 4 pages, revtex, no figure

    Statistical Model Checking for Stochastic Hybrid Systems

    Get PDF
    This paper presents novel extensions and applications of the UPPAAL-SMC model checker. The extensions allow for statistical model checking of stochastic hybrid systems. We show how our race-based stochastic semantics extends to networks of hybrid systems, and indicate the integration technique applied for implementing this semantics in the UPPAAL-SMC simulation engine. We report on two applications of the resulting tool-set coming from systems biology and energy aware buildings.Comment: In Proceedings HSB 2012, arXiv:1208.315
    • 

    corecore