2,064 research outputs found
Sliderule-like property of Wigner's little groups and cyclic S-matrices for multilayer optics
It is noted that two-by-two S-matrices in multilayer optics can be
represented by the Sp(2) group whose algebraic property is the same as the
group of Lorentz transformations applicable to two space-like and one time-like
dimensions. It is noted also that Wigner's little groups have a sliderule-like
property which allows us to perform multiplications by additions. It is shown
that these two mathematical properties lead to a cyclic representation of the
S-matrix for multilayer optics, as in the case of ABCD matrices for laser
cavities. It is therefore possible to write the N-layer S-matrix as a
multiplication of the N single-layer S-matrices resulting in the same
mathematical expression with one of the parameters multiplied by N. In
addition, it is noted, as in the case of lens optics, multilayer optics can
serve as an analogue computer for the contraction of Wigner's little groups for
internal space-time symmetries of relativistic particles.Comment: RevTex 13 pages, Secs. IV and V revised and expande
Backward-wave regime and negative refraction in chiral composites
Possibilities to realize a negative refraction in chiral composites in in
dual-phase mixtures of chiral and dipole particles is studied. It is shown that
because of strong resonant interaction between chiral particles (helixes) and
dipoles, there is a stop band in the frequency area where the backward-wave
regime is expected. The negative refraction can occur near the resonant
frequency of chiral particles. Resonant chiral composites may offer a root to
realization of negative-refraction effect and superlenses in the optical
region
MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice
Development of novel more efficient preventive vaccines against tuberculosis (TB) is crucial to achieve TB eradication by 2050, one of the Millennium Development Goals (MDG) for the current century. MTBVAC is the first and only live attenuated vaccine based on a human isolate of Mycobacterium tuberculosis developed as BCG-replacement strategy in newborns that has entered first-in-human adult clinical trials. In this work, we characterize the safety, immunogenicity and protective efficacy of MTBVAC in a model of newborn C57/BL6 mice. Our data clearly indicate that MTBVAC is safe for newborn mice, and does not affect animal growth or organ development. In addition, MTBVAC-vaccinated mice at birth showed enhanced immunogenicity and better protection against M. tuberculosis challenge in comparison with BCG
Pediatric Esophageal Dilatations: A Cross-Specialty Experience
AIM OF THE STUDY: Esophageal dilatations are commonly performed in pediatric patients who have undergone an esophageal atresia/tracheoesophageal fistula (EA/TEF) repair or following caustic injury. We sought to compare the practice of esophageal dilatation across different specialties. METHODS: We analyzed all patients who had an esophageal dilatation at our center between April 2014 and December 2018. Patients were identified via prospectively maintained databases and clinical coding records. Patients had a combination of dilatations under each specialty: interventional radiology (IR), surgery, and gastroenterology. RESULTS: Thirty-five individual patients underwent 226 dilatations, median dilatations per patient was 3 (1–40). The median age at first dilatation was 18 months (1–194 months). Sixty-eight percent of patients had a previous EA/TEF repair. IR performed 59% of dilatations, surgeons 26%, and 15% by gastroenterologists. Surgeons more frequently were performing initial dilatations (P < .05) and performed more dilatations in EA/TEF patients (P < .0001). There was a significant difference between the time from a surgical dilatation until the next dilatation, 3.7 months, compared with an IR dilatation, 1.8 months (ANOVA, P < .05). Surgeons more frequently increased the size of balloon used (57% versus 33% versus 39%, P < .01). There was no significant difference in balloon size between specialties or in the incremental increase in size between subsequent dilatations. There was one postprocedure perforation, managed conservatively (complication rate = 0.4%). CONCLUSIONS: We have demonstrated that on average, patients wait longer after a surgical dilatation until their next procedure, and surgical teams are more likely to increase the size of the dilating balloon. Surgeons tend to be more involved in their postoperative patients in the initial phases of stricture management. Our results suggest the feasibility and safety of a multispecialty approach for these patients
The repetitive structure of DNA clamps: An overlooked protein tandem repeat
Structured tandem repeats proteins (STRPs) are a specific kind of tandem repeat proteins characterized by a modular and repetitive three-dimensional structure arrangement. The majority of STRPs adopt solenoid structures, but with the increasing availability of experimental structures and high-quality predicted structural models, more STRP folds can be characterized. Here, we describe “Box repeats”, an overlooked STRP fold present in the DNA sliding clamp processivity factors, which has eluded classification although structural data has been available since the late 1990s. Each Box repeat is a β⍺βββ module of about 60 residues, which forms a class V “beads-on-a-string” type STRP. The number of repeats present in processivity factors is organism dependent. Monomers of PCNA proteins in both Archaea and Eukarya have 4 repeats, while the monomers of bacterial beta-sliding clamps have 6 repeats. This new repeat fold has been added to the RepeatsDB database, which now provides structural annotation for 66 Box repeat proteins belonging to different organisms, including viruses
Spin Injection in a Ballistic Two-Dimensional Electron Gas
We explore electrically injected, spin polarized transport in a ballistic
two-dimensional electron gas. We augment the Buettiker-Landauer picture with a
simple, but realistic model for spin-selective contacts to describe multimode
reservoir-to-reservoir transport of ballistic spin 1/2 particles. Clear and
unambiguous signatures of spin transport are established in this regime, for
the simplest measurement configuration that demonstrates them directly. These
new effects originate from spin precession of ballistic carriers; they exhibit
strong dependence upon device geometry and vanish in the diffusive limit. Our
results have important implications for prospective ``spin transistor''
devices.Comment: Submitted to Phys. Rev. Let
Critical assessment of protein intrinsic disorder prediction (CAID) - Results of round 2
Protein intrinsic disorder (ID) is a complex and context-dependent phenomenon that covers a continuum between fully disordered states and folded states with long dynamic regions. The lack of a ground truth that fits all ID flavors and the potential for order-to-disorder transitions depending on specific conditions makes ID prediction challenging. The CAID2 challenge aimed to evaluate the performance of different prediction methods across different benchmarks, leveraging the annotation provided by the DisProt database, which stores the coordinates of ID regions when there is experimental evidence in the literature. The CAID2 challenge demonstrated varying performance of different prediction methods across different benchmarks, highlighting the need for continued development of more versatile and efficient prediction software. Depending on the application, researchers may need to balance performance with execution time when selecting a predictor. Methods based on AlphaFold2 seem to be good ID predictors but they are better at detecting absence of order rather than ID regions as defined in DisProt. The CAID2 predictors can be freely used through the CAID Prediction Portal, and CAID has been integrated into OpenEBench, which will become the official platform for running future CAID challenges
Co-ordination between Rashba spin-orbital interaction and space charge effect and enhanced spin injection into semiconductors
We consider the effect of the Rashba spin-orbital interaction and space
charge in a ferromagnet-insulator/semiconductor/insulator-ferromagnet junction
where the spin current is severely affected by the doping, band structure and
charge screening in the semiconductor. In diffusion region, if the the
resistance of the tunneling barriers is comparable to the semiconductor
resistance, the magnetoresistance of this junction can be greatly enhanced
under appropriate doping by the co-ordination between the Rashba effect and
screened Coulomb interaction in the nonequilibrium transport processes within
Hartree approximation.Comment: 4 pages, 3 figure
- …