6,763 research outputs found
A new method of correcting radial velocity time series for inhomogeneous convection
Magnetic activity strongly impacts stellar RVs and the search for small
planets. We showed previously that in the solar case it induces RV variations
with an amplitude over the cycle on the order of 8 m/s, with signals on short
and long timescales. The major component is the inhibition of the convective
blueshift due to plages. We explore a new approach to correct for this major
component of stellar radial velocities in the case of solar-type stars. The
convective blueshift depends on line depths; we use this property to develop a
method that will characterize the amplitude of this effect and to correct for
this RV component. We build realistic RV time series corresponding to RVs
computed using different sets of lines, including lines in different depth
ranges. We characterize the performance of the method used to reconstruct the
signal without the convective component and the detection limits derived from
the residuals. We identified a set of lines which, combined with a global set
of lines, allows us to reconstruct the convective component with a good
precision and to correct for it. For the full temporal sampling, the power in
the range 100-500~d significantly decreased, by a factor of 100 for a RV noise
below 30 cm/s. We also studied the impact of noise contributions other than the
photon noise, which lead to uncertainties on the RV computation, as well as the
impact of the temporal sampling. We found that these other sources of noise do
not greatly alter the quality of the correction, although they need a better
noise level to reach a similar performance level. A very good correction of the
convective component can be achieved providing very good RV noise levels
combined with a very good instrumental stability and realistic granulation
noise. Under the conditions considered in this paper, detection limits at 480~d
lower than 1 MEarth could be achieved for RV noise below 15 cm/s.Comment: Accepted in A&A 18 July 201
Spontaneous polarization and piezoelectricity in boron nitride nanotubes
Ab initio calculations of the spontaneous polarization and piezoelectric
properties of boron nitride nanotubes show that they are excellent
piezoelectric systems with response values larger than those of piezoelectric
polymers. The intrinsic chiral symmetry of the nanotubes induces an exact
cancellation of the total spontaneous polarization in ideal, isolated nanotubes
of arbitrary indices. Breaking of this symmetry by inter-tube interaction or
elastic deformations induces spontaneous polarization comparable to those of
wurtzite semiconductors.Comment: 5 pages in PRB double column format, 3 figure
Variability of stellar granulation and convective blueshift with spectral type and magnetic activity. I. K and G main sequence stars
In solar-type stars, the attenuation of convective blueshift by stellar
magnetic activity dominates the RV variations over the low amplitude signal
induced by low mass planets. Models of stars that differ from the Sun will
require a good knowledge of the attenuation of the convective blueshift to
estimate its impact on the variations. It is therefore crucial to precisely
determine not only the amplitude of the convective blueshift for different
types of stars, but also the dependence of this convective blueshift on
magnetic activity, as these are key factors in our model producing the RV. We
studied a sample of main sequence stars with spectral types from G0 to K2 and
focused on their temporally averaged properties: the activity level and a
criterion allowing to characterise the amplitude of the convective blueshift.
We find the differential velocity shifts of spectral lines due to convection to
depend on the spectral type, the wavelength (this dependence is correlated with
the Teff and activity level), and on the activity level. This allows us to
quantify the dependence of granulation properties on magnetic activity for
stars other than the Sun. The attenuation factor of the convective blueshift
appears to be constant over the considered range of spectral types. We derive a
convective blueshift which decreases towards lower temperatures, with a trend
in close agreement with models for Teff lower than 5800 K, but with a
significantly larger global amplitude. We finally compare the observed RV
variation amplitudes with those that could be derived from our convective
blueshift using a simple law and find a general agreement on the amplitude. Our
results are consistent with previous results and provide, for the first time,
an estimation of the convective blueshift as a function of Teff, magnetic
activity, and wavelength, over a large sample of G and K main sequence stars
Non-universal transmission phase behaviour of a large quantum dot
The electron wave function experiences a phase modification at coherent
transmission through a quantum dot. This transmission phase undergoes a
characteristic shift of when scanning through a Coulomb-blockade
resonance. Between successive resonances either a transmission phase lapse of
or a phase plateau is theoretically expected to occur depending on the
parity of the corresponding quantum dot states. Despite considerable
experimental effort, this transmission phase behaviour has remained elusive for
a large quantum dot. Here we report on transmission phase measurements across
such a large quantum dot hosting hundreds of electrons. Using an original
electron two-path interferometer to scan the transmission phase along fourteen
successive resonances, we observe both phase lapses and plateaus. Additionally,
we demonstrate that quantum dot deformation alters the sequence of transmission
phase lapses and plateaus via parity modifications of the involved quantum dot
states. Our findings set a milestone towards a comprehensive understanding of
the transmission phase of quantum dots.Comment: Main paper: 18 pages, 5 figures, Supplementary materials: 8 pages, 4
figure
Transmission Phase in the Kondo Regime Revealed in a Two-Path Interferometer
We report on the direct observation of the transmission phase shift through a
Kondo correlated quantum dot by employing a new type of two-path
interferometer. We observed a clear -phase shift, which persists up to
the Kondo temperature . Above this temperature, the phase shifts by
more than at each Coulomb peak, approaching the behavior observed for
the standard Coulomb blockade regime. These observations are in remarkable
agreement with 2-level numerical renormalization group calculations. The unique
combination of experimental and theoretical results presented here fully
elucidates the phase evolution in the Kondo regime.Comment: 4 pages, 3 figure
Interface tactile pour la saisie guidée de connaissances
International audienceIn recent years, artificial intelligence tools have democratized and are increasingly used by people who are not experts in the field. These artificial intelligence tools, like rule-based or constraint-based systems require the input of human expertise to replicate the desired reasoning. Despite the explosion of new devices and new input paradigms, such as tablets and other touch interfaces, it seems that the usability of these tools have not taken advantage of these recent advances. In this article, we illustrate our concept with the rule edition in a fuzzy expert system. The special feature of fuzzy logic is that these rules look closer to natural language than classical logic. We present our work that involves the use of new touch interfaces to edit a fuzzy rule base with one finger. We end this section by the evaluation of the interface with a user panel.Au cours de ces dernières années, les outils d'intelligence artificielle se sont démocratisés et sont de plus en plus sou-vent utilisés par des personnes qui ne sont pas expertes du domaine. Parmi ces outils d'intelligence artificielle, les systèmes à base de règles ou de contraintes nécessitent la saisie de l'expertise humaine afin de reproduire le comporte-ment souhaité. Malgré l'explosion des nouveaux périphé-riques et de nouveaux paradigmes de saisie, comme les tablettes et autres interfaces tactiles, l'ergonomie de ces outils semble ne pas avoir profité de toutes ces avancées récentes. Dans cet article, nous prenons l'exemple d'un système expert flou pour lequel il faut rédiger des règles. La particu-larité de la logique floue est que ces règles sont construites d'une manière plus proche du langage naturel qu'en lo-gique classique. Nous présentons notre travail qui consiste en l'exploitation des nouvelles interfaces tactiles afin de rédiger une base de règles floues avec un seul doigt. Nous terminons cet article par l'évaluation de l'interface auprès d'un panel d'utilisateurs
Eumelanin-based coloration and fitness parameters in birds: a meta-analysis
Although melanin is the most common pigment in animal integuments, the adaptive function of variation in melanin-based coloration remains poorly understood. The individual fitness returns associated with melanin pigments can be variable across species as these pigments can have physical and biological protective properties and genes involved in melanogenesis may vary in the intensity of pleiotropic effects. Moreover, dark and pale coloration can also enhance camouflage in alternative habitats and melanin-based coloration can be involved in social interactions. We investigated whether darker or paler individuals achieve a higher fitness in birds, a taxon wherein associations between melanin-based coloration and fitness parameters have been studied in a large number of species. A meta-analysis showed that the degree of melanin-based coloration was not significantly associated with laying date, clutch size, brood size, and survival across 26 species. Similar results were found when restricting the analyses to non-sexually dimorphic birds, colour polymorphic and monomorphic species, in passerines and non-passerines and in species for which inter-individual variation in melanism is due to colour intensity. However, eumelanic coloration was positively associated with clutch and brood size in sexually dimorphic species and those that vary in the size of black patches, respectively. Given that greater extent of melanin-based coloration was positively associated with reproductive parameters and survival in some species but negatively in other species, we conclude that in birds the sign and magnitude of selection exerted on melanin-based coloration is species- or trait-specific
First-principles study of high conductance DNA sequencing with carbon nanotube electrodes
Rapid and cost-effective DNA sequencing at the single nucleotide level might
be achieved by measuring a transverse electronic current as single-stranded DNA
is pulled through a nano-sized pore. In order to enhance the electronic
coupling between the nucleotides and the electrodes and hence the current
signals, we employ a pair of single-walled close-ended (6,6) carbon nanotubes
(CNTs) as electrodes. We then investigate the electron transport properties of
nucleotides sandwiched between such electrodes by using first-principles
quantum transport theory. In particular we consider the extreme case where the
separation between the electrodes is the smallest possible that still allows
the DNA translocation. The benzene-like ring at the end cap of the CNT can
strongly couple with the nucleobases and therefore both reduce conformational
fluctuations and significantly improve the conductance. The optimal molecular
configurations, at which the nucleotides strongly couple to the CNTs, and which
yield the largest transmission, are first identified. Then the electronic
structures and the electron transport of these optimal configurations are
analyzed. The typical tunneling currents are of the order of 50 nA for voltages
up to 1 V. At higher bias, where resonant transport through the molecular
states is possible, the current is of the order of several A. Below 1 V
the currents associated to the different nucleotides are consistently
distinguishable, with adenine having the largest current, guanine the
second-largest, cytosine the third and finally thymine the smallest. We further
calculate the transmission coefficient profiles as the nucleotides are dragged
along the DNA translocation path and investigate the effects of configurational
variations. Based on these results we propose a DNA sequencing protocol
combining three possible data analysis strategies.Comment: 12 pages, 17 figures, 3 table
Comparison of Magnetic Flux Distribution between a Coronal Hole and a Quiet Region
Employing Big Bear Solar Observatory (BBSO) deep magnetograms and H
images in a quiet region and a coronal hole, observed on September 14 and 16,
2004, respectively, we have explored the magnetic flux emergence, disappearance
and distribution in the two regions. The following results are obtained: (1)
The evolution of magnetic flux in the quiet region is much faster than that in
the coronal hole, as the flux appeared in the form of ephemeral regions in the
quiet region is 4.3 times as large as that in the coronal hole, and the flux
disappeared in the form of flux cancellation, 2.9 times as fast as in the
coronal hole. (2) More magnetic elements with opposite polarities in the quiet
region are connected by arch filaments, estimating from magnetograms and
H images. (3) We measured the magnetic flux of about 1000 magnetic
elements in each observing region. The flux distribution of network and
intranetwork (IN) elements is similar in both polarities in the quiet region.
For network fields in the coronal hole, the number of negative elements is much
more than that of positive elements. However for the IN fields, the number of
positive elements is much more than that of negative elements. (4) In the
coronal hole, the fraction of negative flux change obviously with different
threshold flux density. 73% of the magnetic fields with flux density larger
than 2 Gauss is negative polarity, and 95% of the magnetic fields is negative,
if we only measure the fields with their flux density larger than 20 Gauss. Our
results display that in a coronal hole, stronger fields is occupied by one
predominant polarity; however the majority of weaker fields, occupied by the
other polarity
- …
