14,173 research outputs found

    Productivity policy

    Get PDF
    In this Briefing Note, we first present internationally comparative evidence on the UK's productivity performance (Section 2) and some of the underlying "drivers" of productivity identified by the government (Section 3). We then provide an overview of productivity policy under both Labour governments since 1997, and discuss the recent direction of policy in this 2005 Election Briefing area (Section 4). Finally, we discuss the proposals of the three main parties in the area of productivity policy (Section 5)

    Introduction: memory on the move

    Get PDF

    Applications of Wavelets to the Analysis of Cosmic Microwave Background Maps

    Get PDF
    We consider wavelets as a tool to perform a variety of tasks in the context of analyzing cosmic microwave background (CMB) maps. Using Spherical Haar Wavelets we define a position and angular-scale-dependent measure of power that can be used to assess the existence of spatial structure. We apply planar Daubechies wavelets for the identification and removal of points sources from small sections of sky maps. Our technique can successfully identify virtually all point sources which are above 3 sigma and more than 80% of those above 1 sigma. We discuss the trade-offs between the levels of correct and false detections. We denoise and compress a 100,000 pixel CMB map by a factor of about 10 in 5 seconds achieving a noise reduction of about 35%. In contrast to Wiener filtering the compression process is model independent and very fast. We discuss the usefulness of wavelets for power spectrum and cosmological parameter estimation. We conclude that at present wavelet functions are most suitable for identifying localized sources.Comment: 10 pages, 6 figures. Submitted to MNRA

    Constraining Large Scale Structure Theories with the Cosmic Background Radiation

    Full text link
    We review the relevant 10+ parameters associated with inflation and matter content; the relation between LSS and primary and secondary CMB anisotropy probes; COBE constraints on energy injection; current anisotropy band-powers which strongly support the gravitational instability theory and suggest the universe could not have reionized too early. We use Bayesian analysis methods to determine what current CMB and CMB+LSS data imply for inflation-based Gaussian fluctuations in tilted Λ\LambdaCDM, Λ\LambdahCDM and oCDM model sequences with age 11-15 Gyr, consisting of mixtures of baryons, cold (and possibly hot) dark matter, vacuum energy, and curvature energy in open cosmologies. For example, we find the slope of the initial spectrum is within about 5% of the (preferred) scale invariant form when just the CMB data is used, and for Λ\LambdaCDM when LSS data is combined with CMB; with both, a nonzero value of ΩΛ\Omega_\Lambda is strongly preferred (≈2/3\approx 2/3 for a 13 Gyr sequence, similar to the value from SNIa). The ooCDM sequence prefers Ωtot<1\Omega_{tot}<1 , but is overall much less likely than the flat ΩΛ≠0\Omega_\Lambda \ne 0 sequence with CMB+LSS. We also review the rosy forecasts of angular power spectra and parameter estimates from future balloon and satellite experiments when foreground and systematic effects are ignored.Comment: 20 pages, LaTeX, 5 figures, 2 tables, uses rspublic.sty To appear in Philosophical Transactions of the Royal Society of London A, 1998. "Discussion Meeting on Large Scale Structure in the Universe," Royal Society, London, March 1998. Text and colour figures also available at ftp://ftp.cita.utoronto.ca/bond/roysoc9

    Cosmic Microwave Background Anisotropy Window Functions Revisited

    Get PDF
    The primary results of most observations of cosmic microwave background (CMB) anisotropy are estimates of the angular power spectrum averaged through some broad band, called band-powers. These estimates are in turn what are used to produce constraints on cosmological parameters due to all CMB observations. Essential to this estimation of cosmological parameters is the calculation of the expected band-power for a given experiment, given a theoretical power spectrum. Here we derive the "band power" window function which should be used for this calculation, and point out that it is not equivalent to the window function used to calculate the variance. This important distinction has been absent from much of the literature: the variance window function is often used as the band-power window function. We discuss the validity of this assumed equivalence, the role of window functions for experiments that constrain the power in {\it multiple} bands, and summarize a prescription for reporting experimental results. The analysis methods detailed here are applied in a companion paper to three years of data from the Medium Scale Anisotropy Measurement.Comment: 5 pages, 1 included .eps figure, PRD in press---final published versio

    The Cosmic Microwave Background & Inflation, Then & Now

    Get PDF
    Boomerang, Maxima, DASI, CBI and VSA significantly increase the case for accelerated expansion in the early universe (the inflationary paradigm) and at the current epoch (dark energy dominance), especially when combined with data on high redshift supernovae (SN1) and large scale structure (LSS). There are ``7 pillars of Inflation'' that can be shown with the CMB probe, and at least 5, and possibly 6, of these have already been demonstrated in the CMB data: (1) a large scale gravitational potential; (2) acoustic peaks/dips; (3) damping due to shear viscosity; (4) a Gaussian (maximally random) distribution; (5) secondary anisotropies; (6) polarization. A 7th pillar, anisotropies induced by gravity wave quantum noise, could be too small. A minimal inflation parameter set, \omega_b,\omega_{cdm}, \Omega_{tot}, \Omega_Q,w_Q,n_s,\tau_C, \sigma_8}, is used to illustrate the power of the current data. We find the CMB+LSS+SN1 data give \Omega_{tot} =1.00^{+.07}_{-.03}, consistent with (non-baroque) inflation theory. Restricting to \Omega_{tot}=1, we find a nearly scale invariant spectrum, n_s =0.97^{+.08}_{-.05}. The CDM density, \Omega_{cdm}{\rm h}^2 =.12^{+.01}_{-.01}, and baryon density, \Omega_b {\rm h}^2 = >.022^{+.003}_{-.002}, are in the expected range. (The Big Bang nucleosynthesis estimate is 0.019\pm 0.002.) Substantial dark (unclustered) energy is inferred, \Omega_Q \approx 0.68 \pm 0.05, and CMB+LSS \Omega_Q values are compatible with the independent SN1 estimates. The dark energy equation of state, crudely parameterized by a quintessence-field pressure-to-density ratio w_Q, is not well determined by CMB+LSS (w_Q < -0.4 at 95% CL), but when combined with SN1 the resulting w_Q < -0.7 limit is quite consistent with the w_Q=-1 cosmological constant case.Comment: 20 pages, 8 figures, in Theoretical Physics, MRST 2002: A Tribute to George Libbrandt (AIP), eds. V. Elias, R. Epp, R. Myer

    The Evolution of the Cosmic Microwave Background

    Full text link
    We discuss the time dependence and future of the Cosmic Microwave Background (CMB) in the context of the standard cosmological model, in which we are now entering a state of endless accelerated expansion. The mean temperature will simply decrease until it reaches the effective temperature of the de Sitter vacuum, while the dipole will oscillate as the Sun orbits the Galaxy. However, the higher CMB multipoles have a richer phenomenology. The CMB anisotropy power spectrum will for the most part simply project to smaller scales, as the comoving distance to last scattering increases, and we derive a scaling relation that describes this behaviour. However, there will also be a dramatic increase in the integrated Sachs-Wolfe contribution at low multipoles. We also discuss the effects of tensor modes and optical depth due to Thomson scattering. We introduce a correlation function relating the sky maps at two times and the closely related power spectrum of the difference map. We compute the evolution both analytically and numerically, and present simulated future sky maps.Comment: 23 pages, 11 figures; references added; one figure dropped and minor changes to match published version. For high-resolution versions of figures and animations, see http://www.astro.ubc.ca/people/scott/future.htm

    The Imprint of Gravitational Waves on the Cosmic Microwave Background

    Get PDF
    Long-wavelength gravitational waves can induce significant temperature anisotropy in the cosmic microwave background. Distinguishing this from anisotropy induced by energy density fluctuations is critical for testing inflationary cosmology and theories of large-scale structure formation. We describe full radiative transport calculations of the two contributions and show that they differ dramatically at angular scales below a few degrees. We show how anisotropy experiments probing large- and small-angular scales can combine to distinguish the imprint due to gravitational waves.Comment: 11 pages, Penn Preprint-UPR-

    The Sunyaev-Zeldovich effect in CMB-calibrated theories applied to the Cosmic Background Imager anisotropy power at l > 2000

    Full text link
    We discuss the nature of the possible high-l excess in the Cosmic Microwave Background (CMB) anisotropy power spectrum observed by the Cosmic Background Imager (CBI). We probe the angular structure of the excess in the CBI deep fields and investigate whether it could be due to the scattering of CMB photons by hot electrons within clusters, the Sunyaev-Zeldovich (SZ) effect. We estimate the density fluctuation parameters for amplitude, sigma_8, and shape, Gamma, from CMB primary anisotropy data and other cosmological data. We use the results of two separate hydrodynamical codes for Lambda-CDM cosmologies, consistent with the allowed sigma_8 and Gamma values, to quantify the expected contribution from the SZ effect to the bandpowers of the CBI experiment and pass simulated SZ effect maps through our CBI analysis pipeline. The result is very sensitive to the value of sigma_8, and is roughly consistent with the observed power if sigma_8 ~ 1. We conclude that the CBI anomaly could be a result of the SZ effect for the class of Lambda-CDM concordance models if sigma_8 is in the upper range of values allowed by current CMB and Large Scale Structure (LSS) data.Comment: Accepted by The Astrophysical Journal; 17 pages including 12 color figures. v2 matches accepted version. Additional information at http://www.astro.caltech.edu/~tjp/CBI

    Gravitational Lensing Effect on the Two-point Correlation of Hotspots in the Cosmic Microwave Background

    Get PDF
    We investigate the weak gravitational lensing effect due to the large-scale structure of the universe on two-point correlations of local maxima ({\em hotspots}) in the 2D sky map of the cosmic microwave background (CMB) anisotropy. According to the Gaussian random statistics as most inflationary scenarios predict, the hotspots are discretely distributed with some {\em characteristic} angular separations on the last scattering surface owing to oscillations of the CMB angular power spectrum. The weak lensing then causes pairs of hotspots which are separated with the characteristic scale to be observed with various separations. We found that the lensing fairly smoothes the oscillatory features of the two-point correlation function of hotspots. This indicates that the hotspots correlations can be a new statistical tool for measuring shape and normalization of the power spectrum of matter fluctuations from the lensing signatures.Comment: 6 pages, 2 figures; replaced with published versio
    • 

    corecore