608 research outputs found

    EUCLID : Dark Universe Probe and Microlensing planet Hunter

    Full text link
    There is a remarkable synergy between requirements for Dark Energy probes by cosmic shear measurements and planet hunting by microlensing. Employing weak and strong gravitational lensing to trace and detect the distribution of matter on cosmic and Galactic scales, but as well as to the very small scales of exoplanets is a unique meeting point from cosmology to exoplanets. It will use gravity as the tool to explore the full range of masses not accessible by any other means. EUCLID is a 1.2m telescope with optical and IR wide field imagers and slitless spectroscopy, proposed to ESA Cosmic Vision to probe for Dark Energy, Baryonic acoustic oscillation, galaxy evolution, and an exoplanet hunt via microlensing. A 3 months microlensing program will already efficiently probe for planets down to the mass of Mars at the snow line, for free floating terrestrial or gaseous planets and habitable super Earth. A 12+ months survey would give a census on habitable Earth planets around solar like stars. This is the perfect complement to the statistics that will be provided by the KEPLER satellite, and these missions combined will provide a full census of extrasolar planets from hot, warm, habitable, frozen to free floating.Comment: 6 pages 3 figures, invited talk in Pathways towards habitable planets, Barcelona, Sept 200

    A frozen super-Earth orbiting a star at the bottom of the Main Sequence

    Full text link
    We observed the microlensing event MOA-2007-BLG-192 at high angular resolution in JHKs with the NACO adaptive optics system on the VLT while the object was still amplified by a factor 1.23 and then at baseline 18 months later. We analyzed and calibrated the NACO photometry in the standard 2MASS system in order to accurately constrain the source and the lens star fluxes. We detect light from the host star of MOA-2007-BLG-192Lb, which significantly reduces the uncertainties in its char- acteristics as compared to earlier analyses. We find that MOA-2007-BLG-192L is most likely a very low mass late type M-dwarf (0.084 [+0.015] [-0.012] M\odot) at a distance of 660 [+100] [-70] pc orbited by a 3.2 [+5.2] [-1.8] M\oplus super-Earth at 0.66 [+0.51] [-0.22] AU. We then discuss the properties of this cold planetary system.Comment: published version A&A 540, A78 (2012) A&A, 10 pages, 7 Figure

    Theoretical investigation of hydrogen storage in metal-intercalated graphitic materials

    Full text link
    We have used first-principles methods to investigate how metal atoms dispersed in the interlayer space of graphitic materials affect their hydrogen-binding properties. We have considered ideal stage-one metal-intercalated graphites of various compositions as representative model systems. Our calculations suggest that alkaline earth metals can significantly enhance the hydrogen storage properties: for example, Be and Mg atoms would act as binding sites of three or four hydrogen molecules, with binding energies per H2_2 in the 0.2--0.7 eV range, as required for applications. We also find that alkali and transition metals are not as effective in enhancing the storage capacity.Comment: 11 pages with 4 figures embedded. More information at http://www.icmab.es/dmmis/leem/jorge

    Towards A Census of Earth-mass Exo-planets with Gravitational Microlensing

    Full text link
    Thirteen exo-planets have been discovered using the gravitational microlensing technique (out of which 7 have been published). These planets already demonstrate that super-Earths (with mass up to ~10 Earth masses) beyond the snow line are common and multiple planet systems are not rare. In this White Paper we introduce the basic concepts of the gravitational microlensing technique, summarise the current mode of discovery and outline future steps towards a complete census of planets including Earth-mass planets. In the near-term (over the next 5 years) we advocate a strategy of automated follow-up with existing and upgraded telescopes which will significantly increase the current planet detection efficiency. In the medium 5-10 year term, we envision an international network of wide-field 2m class telescopes to discover Earth-mass and free-floating exo-planets. In the long (10-15 year) term, we strongly advocate a space microlensing telescope which, when combined with Kepler, will provide a complete census of planets down to Earth mass at almost all separations. Such a survey could be undertaken as a science programme on Euclid, a dark energy probe with a wide-field imager which has been proposed to ESA's Cosmic Vision Programme.Comment: 10 pages. White Paper submission to the ESA Exo-Planet Roadmap Advisory Team. See also "Inferring statistics of planet populations by means of automated microlensing searches" by M. Dominik et al. (arXiv:0808.0004

    Limb-darkening measurements for a cool red giant in microlensing event OGLE 2004-BLG-482

    Full text link
    Aims: We present a detailed analysis of OGLE 2004-BLG-482, a relatively high-magnification single-lens microlensing event which exhibits clear extended-source effects. These events are relatively rare, but they potentially contain unique information on the stellar atmosphere properties of their source star, as shown in this study. Methods: Our dense photometric coverage of the overall light curve and a proper microlensing modelling allow us to derive measurements of the OGLE 2004-BLG-482 source star's linear limb-darkening coefficients in three bands, including standard Johnson-Cousins I and R, as well as in a broad clear filter. In particular, we discuss in detail the problems of multi-band and multi-site modelling on the expected precision of our results. We also obtained high-resolution UVES spectra as part of a ToO programme at ESO VLT from which we derive the source star's precise fundamental parameters. Results: From the high-resolution UVES spectra, we find that OGLE 2004-BLG-482's source star is a red giant of MK type a bit later than M3, with Teff = 3667 +/- 150 K, log g = 2.1 +/- 1.0 and an assumed solar metallicity. This is confirmed by an OGLE calibrated colour-magnitude diagram. We then obtain from a detailed microlensing modelling of the light curve linear limb-darkening coefficients that we compare to model-atmosphere predictions available in the literature, and find a very good agreement for the I and R bands. In addition, we perform a similar analysis using an alternative description of limb darkening based on a principal component analysis of ATLAS limb-darkening profiles, and also find a very good agreement between measurements and model predictions.Comment: Accepted in A&

    Limits on additional planetary companions to OGLE-2005-BLG-390L

    Full text link
    We investigate constraints on additional planets orbiting the distant M-dwarf star OGLE-2005-BLG-390L, around which photometric microlensing data has revealed the existence of the sub-Neptune-mass planet OGLE-2005-BLG-390Lb. We specifically aim to study potential Jovian companions and compare our findings with predictions from core-accretion and disc-instability models of planet formation. We also obtain an estimate of the detection probability for sub-Neptune mass planets similar to OGLE-2005-BLG-390Lb using a simplified simulation of a microlensing experiment. We compute the efficiency of our photometric data for detecting additional planets around OGLE-2005-BLG-390L, as a function of the microlensing model parameters and convert it into a function of the orbital axis and planet mass by means of an adopted model of the Milky Way. We find that more than 50 % of potential planets with a mass in excess of 1 M_J between 1.1 and 2.3 AU around OGLE-2005-BLG-390L would have revealed their existence, whereas for gas giants above 3 M_J in orbits between 1.5 and 2.2 AU, the detection efficiency reaches 70 %; however, no such companion was observed. Our photometric microlensing data therefore do not contradict the existence of gas giant planets at any separation orbiting OGLE-2005-BLG-390L. Furthermore we find a detection probability for an OGLE-2005-BLG-390Lb-like planet of around 2-5 %. In agreement with current planet formation theories, this quantitatively supports the prediction that sub-Neptune mass planets are common around low-mass stars.Comment: 10 pages, 4 figures, accepted by A&

    A systematic fitting scheme for caustic-crossing microlensing events

    Get PDF
    We outline a method for fitting binary-lens caustic-crossing microlensing events based on the alternative model parameterisation proposed and detailed in Cassan (2008). As an illustration of our methodology, we present an analysis of OGLE-2007-BLG-472, a double-peaked Galactic microlensing event with a source crossing the whole caustic structure in less than three days. In order to identify all possible models we conduct an extensive search of the parameter space, followed by a refinement of the parameters with a Markov Chain-Monte Carlo algorithm. We find a number of low-chi2 regions in the parameter space, which lead to several distinct competitive best models. We examine the parameters for each of them, and estimate their physical properties. We find that our fitting strategy locates several minima that are difficult to find with other modelling strategies and is therefore a more appropriate method to fit this type of events.Comment: 12 pages, 11 figure

    A Jovian-mass Planet in Microlensing Event OGLE-2005-BLG-071

    Full text link
    We report the discovery of a several-Jupiter mass planetary companion to the primary lens star in microlensing event OGLE-2005-BLG-071. Precise (<1%) photometry at the peak of the event yields an extremely high signal-to-noise ratio detection of a deviation from the light curve expected from an isolated lens. The planetary character of this deviation is easily and unambiguously discernible from the gross features of the light curve. Detailed modeling yields a tightly-constrained planet-star mass ratio of q=m_p/M=0.0071+/-0.0003. This is the second robust detection of a planet with microlensing, demonstrating that the technique itself is viable and that planets are not rare in the systems probed by microlensing, which typically lie several kpc toward the Galactic center.Comment: 4 pages. Minor changes. Accepted for publication in ApJ Letter
    corecore