145 research outputs found

    A comparison of the Bering Sea, Gulf of Alaska, and Aleutian Islands large marine ecosystems through food web modeling / by K. Aydin ... [et al.]

    Get PDF
    Detailed mass balance food web models were constructed to compare ecosystem characteristics for three Alaska regions: the eastern Bering Sea (EBS), the Gulf of Alaska (GOA), and the Aleutian Islands (AI). This paper documents the methods and data used to construct the models and compares ecosystem structure and indicators across models. The common modeling framework, including biomass pool and fishery definitions, resulted in comparable food webs for the three ecosystems which showed that they all have the same apex predator—the Pacific halibut longline fishery. However, despite the similar methods used to construct the models, the data from each system included in the analysis clearly define differences in food web structure which may be important considerations for fishery management in Alaska ecosystems. The results showed that the EBS ecosystem has a much larger benthic influence in its food web than either the GOA or the AI. Conversely, the AI ecosystem has the strongest pelagic influence in its food web relative to the other two systems. The GOA ecosystem appears balanced between benthic and pelagic pathways, but is notable in having a smaller fisheries catch relative to the other two systems, and a high biomass of fish predators above trophic level (TL) 4, arrowtooth flounder and halibut. The patterns visible in aggregated food webs were confirmed in additional more detailed analyses of biomass and consumption in each ecosystem, using both the single species and whole ecosystem indicators developed here

    Peruvian Red Uakaris (Cacajao calvus ucayalii) Are Not Flooded-Forest Specialists

    Get PDF
    In the literature, particularly in primatological books, the Peruvian red uakari (Cacajao calvus ucayalii) is generally considered as a species that is specialized on living in flooded forest, despite existing evidence to the contrary. Here we review all available information on habitats where Cacajao calvus ucayalii have been observed. Most sightings are from terra firme, including palm swamps, or from mixed habitats, including terra firme and flooded forest. Therefore, we conclude that the species is not a flooded-forest specialist, but is flexible in its habitat requirements and generally uses terra firme forests or a mixture of habitats. Proper recognition of habitat requirements is important for understanding the ecoethological adaptations of a species and for appropriate conservation measures

    DNA Fingerprinting Validates Seed Dispersal Curves from Observational Studies in the Neotropical Legume Parkia

    Get PDF
    Background: Determining the distances over which seeds are dispersed is a crucial component for examining spatial patterns of seed dispersal and their consequences for plant reproductive success and population structure. However, following the fate of individual seeds after removal from the source tree till deposition at a distant place is generally extremely difficult. Here we provide a comparison of observationally and genetically determined seed dispersal distances and dispersal curves in a Neotropical animal-plant system. Methodology/Principal Findings: In a field study on the dispersal of seeds of three Parkia (Fabaceae) species by two Neotropical primate species, Saguinus fuscicollis and Saguinus mystax, in Peruvian Amazonia, we observationally determined dispersal distances. These dispersal distances were then validated through DNA fingerprinting, by matching DNA from the maternally derived seed coat to DNA from potential source trees. We found that dispersal distances are strongly rightskewed, and that distributions obtained through observational and genetic methods and fitted distributions do not differ significantly from each other. Conclusions/Significance: Our study showed that seed dispersal distances can be reliably estimated through observational methods when a strict criterion for inclusion of seeds is observed. Furthermore, dispersal distances produced by the two primate species indicated that these primates fulfil one of the criteria for efficient seed dispersers. Finally, our stud

    Current and Future Patterns of Global Marine Mammal Biodiversity

    Get PDF
    Quantifying the spatial distribution of taxa is an important prerequisite for the preservation of biodiversity, and can provide a baseline against which to measure the impacts of climate change. Here we analyse patterns of marine mammal species richness based on predictions of global distributional ranges for 115 species, including all extant pinnipeds and cetaceans. We used an environmental suitability model specifically designed to address the paucity of distributional data for many marine mammal species. We generated richness patterns by overlaying predicted distributions for all species; these were then validated against sightings data from dedicated long-term surveys in the Eastern Tropical Pacific, the Northeast Atlantic and the Southern Ocean. Model outputs correlated well with empirically observed patterns of biodiversity in all three survey regions. Marine mammal richness was predicted to be highest in temperate waters of both hemispheres with distinct hotspots around New Zealand, Japan, Baja California, the Galapagos Islands, the Southeast Pacific, and the Southern Ocean. We then applied our model to explore potential changes in biodiversity under future perturbations of environmental conditions. Forward projections of biodiversity using an intermediate Intergovernmental Panel for Climate Change (IPCC) temperature scenario predicted that projected ocean warming and changes in sea ice cover until 2050 may have moderate effects on the spatial patterns of marine mammal richness. Increases in cetacean richness were predicted above 40° latitude in both hemispheres, while decreases in both pinniped and cetacean richness were expected at lower latitudes. Our results show how species distribution models can be applied to explore broad patterns of marine biodiversity worldwide for taxa for which limited distributional data are available

    Importance of Achromatic Contrast in Short-Range Fruit Foraging of Primates

    Get PDF
    Trichromatic primates have a ‘red-green’ chromatic channel in addition to luminance and ‘blue-yellow’ channels. It has been argued that the red-green channel evolved in primates as an adaptation for detecting reddish or yellowish objects, such as ripe fruits, against a background of foliage. However, foraging advantages to trichromatic primates remain unverified by behavioral observation of primates in their natural habitats. New World monkeys (platyrrhines) are an excellent model for this evaluation because of the highly polymorphic nature of their color vision due to allelic variation of the L-M opsin gene on the X chromosome. In this study we carried out field observations of a group of wild, frugivorous black-handed spider monkeys (Ateles geoffroyi frontatus, Gray 1842, Platyrrhini), consisting of both dichromats (n = 12) and trichromats (n = 9) in Santa Rosa National Park, Costa Rica. We determined the color vision types of individuals in this group by genotyping their L-M opsin and measured foraging efficiency of each individual for fruits located at a grasping distance. Contrary to the predicted advantage for trichromats, there was no significant difference between dichromats and trichromats in foraging efficiency and we found that the luminance contrast was the main determinant of the variation of foraging efficiency among red-green, blue-yellow and luminance contrasts. Our results suggest that luminance contrast can serve as an important cue in short-range foraging attempts despite other sensory cues that could be available. Additionally, the advantage of red-green color vision in primates may not be as salient as previously thought and needs to be evaluated in further field observations

    The ‘mosaic habitat’ concept in human evolution: past and present

    Get PDF
    The habitats preferred by hominins and other species are an important theme in palaeoanthropology, and the ‘mosaic habitat’ (also referred to as habitat heterogeneity) has been a central concept in this regard for the last four decades. Here we explore the development of this concept – loosely defined as a range of different habitat types, such as woodlands, riverine forest and savannah within a limited spatial area– in studies of human evolution in the last sixty years or so. We outline the key developments that took place before and around the time when the term ‘mosaic’ came to wider palaeoanthropological attention. To achieve this we used an analysis of the published literature, a study of illustrations of hominin evolution from 1925 onwards and an email survey of senior researchers in palaeoanthropology and related fields. We found that the term mosaic starts to be applied in palaeoanthropological thinking during the 1970’s due to the work of a number of researchers, including Karl Butzer and Glynn Isaac , with the earliest usage we have found of ‘mosaic’ in specific reference to hominin habitats being by Adriaan Kortlandt (1972). While we observe a steady increase in the numbers of publications reporting mosaic palaeohabitats, in keeping with the growing interest and specialisation in various methods of palaeoenvironmental reconstruction, we also note that there is a lack of critical studies that define this habitat, or examine the temporal and spatial scales associated with it. The general consensus within the field is that the concept now requires more detailed definition and study to evaluate its role in human evolution

    Phylogenetic relationships of the New World titi monkeys (Callicebus): First appraisal of taxonomy based on molecular evidence

    Get PDF
    Background: Titi monkeys, Callicebus, comprise the most species-rich primate genus-34 species are currently recognised, five of them described since 2005. The lack of molecular data for titi monkeys has meant that little is known of their phylogenetic relationships and divergence times. To clarify their evolutionary history, we assembled a large molecular dataset by sequencing 20 nuclear and two mitochondrial loci for 15 species, including representatives from all recognised species groups. Phylogenetic relationships were inferred using concatenated maximum likelihood and Bayesian analyses, allowing us to evaluate the current taxonomic hypothesis for the genus. Results: Our results show four distinct Callicebus clades, for the most part concordant with the currently recognised morphological species-groups-the torquatus group, the personatus group, the donacophilus group, and the moloch group. The cupreus and moloch groups are not monophyletic, and all species of the formerly recognized cupreus group are reassigned to the moloch group. Two of the major divergence events are dated to the Miocene. The torquatus group, the oldest radiation, diverged c. 11 Ma; and the Atlantic forest personatus group split from the ancestor of all donacophilus and moloch species at 9-8 Ma. There is little molecular evidence for the separation of Callicebus caligatus and C. dubius, and we suggest that C. dubius should be considered a junior synonym of a polymorphic C. caligatus. Conclusions: Considering molecular, morphological and biogeographic evidence, we propose a new genus level taxonomy for titi monkeys: Cheracebus n. gen. in the Orinoco, Negro and upper Amazon basins (torquatus group), Callicebus Thomas, 1903, in the Atlantic Forest (personatus group), and Plecturocebus n. gen. in the Amazon basin and Chaco region (donacophilus and moloch groups). © 2016 Byrne et al

    On the mating system of the cooperatively breeding saddle-backed tamarin ( Saguinus fuscicollis )

    Full text link
    This paper reports on 5 years of observatiors of individually marked saddle-backed tamarins ( Saguinus fuscicollis , Callitrichidae). Although callitrichids have long been presumed to have a monogamous social system, this study shows that the breeding structure of saddle-back tamarin groups is highly variable. Groups most commonly include two or more adult males and a single reproductive female, but occasionally contain only a single pair of adults, or less often, two reproductively active females and one or more males. Data on group compositions, group formations, intergroup movements and copulations show that the social and mating systems of this species are more flexible than those of any other non-human primate yet studied. Infants (usually twins) were cared for by all group members. There were two classes of helpers: young, nonreproductive individuals who helped to care for full or half siblings, and cooperatively polyandrous males who cared for infants whom they may have fathered. The observations suggest that non-reproductive helpers may benefit from their helping behavior through a combination of inclusive fitness gains, reciprocal altruism, and the value of gaining experience at parental care.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46874/1/265_2004_Article_BF00295541.pd

    The evolution of pair-living, sexual monogamy, and cooperative infant care: Insights from research on wild owl monkeys, titis, sakis, and tamarins

    Get PDF
    “Monogamy” and pair bonding have long been of interest to anthropologists and primatologists. Their study contributes to our knowledge of human evolutionary biology and social evolution without the cultural trappings associated with studying human societies directly. Here, we first provide an overview of theoretical considerations, followed by an evaluation of recent comparative studies of the evolution of “social monogamy”; we are left with serious doubts about the conclusions of these studies that stem from the often poor quality of the data used and an overreliance on secondary sources without vetting the data therein. We then describe our field research program on four “monogamous” platyrrhines (owl monkeys, titis, sakis, and tamarins), evaluate how well our data support various hypotheses proposed to explain “monogamy,” and compare our data to those reported on the same genera in comparative studies. Overall, we found a distressing lack of agreement between the data used in comparative studies and data from the literature for the taxa that we work with. In the final section, we propose areas of research that deserve more attention. We stress the need for more high‐quality natural history data, and we urge researchers to be cautious about the uncritical use of variables of uncertain internal validity. Overall, it is imperative that biological anthropologists establish and follow clear criteria for comparing and combining results from published studies and that researchers, reviewers, and editors alike comply with these standards to improve the transparency, reproducibility, and interpretability of causal inferences made in comparative studies.Division of Behavioral and Cognitive Sciences; National Institute of Child Health and Human Development; National Institutes of Agin
    • 

    corecore