27 research outputs found

    Smart polymer mediated purification and recovery of active proteins from inclusion bodies

    No full text
    Obtaining correctly folded proteins from inclusion bodies of recombinant proteins expressed in bacterial hosts requires solubilization with denaturants and a refolding step. Aggregation competes with the second step. Refolding of eight different proteins was carried out by precipitation with smart polymers. These proteins have different molecular weights, different number of disulfide bridges and some of these are known to be highly prone to aggregation. A high throughput refolding screen based upon fluorescence emission maximum around 340 nm (for correctly folded proteins) was developed to identify the suitable smart polymer. The proteins could be dissociated and recovered after the refolding step. The refolding could be scaled up and high refolding yields in the range of 8 mg L-1 (for CD4D12, the first two domains of human CD4) to 58 mg L-1 (for malETrx, thioredoxin fused with signal peptide of maltose binding protein) were obtained. Dynamic light scattering (DLS) showed that polymer if chosen correctly acted as a pseuclochaperonin and bound to the proteins. It also showed that the time for maximum binding was about 50 min which coincided with the time required for incubation (with the polymer) before precipitation for maximum recovery of folded proteins. The refolded proteins were characterized by fluorescence emission spectra, circular dichroism (CD) spectroscopy, melting temperature (T-m), and surface hydrophobicity measurement by ANS (8-anilinol-naphthalene sulfonic acid) fluorescence. Biological activity assay for thioredoxin and fluorescence based assay in case of maltose binding protein (MBP) were also carried out to confirm correct refolding. (C) 2012 Elsevier B.V. All rights reserved

    Cutting Edge: Caspase-8 Is a Linchpin in Caspase-3 and Gasdermin D Activation to Control Cell Death, Cytokine Release, and Host Defense during Influenza A Virus Infection

    No full text
    Programmed cell death (PCD) is essential for the innate immune response, which serves as the first line of defense against pathogens. Caspases regulate PCD, immune responses, and homeostasis. Caspase-8 specifically plays multifaceted roles in PCD pathways including pyroptosis, apoptosis, and necroptosis. However, because caspase-8-deficient mice are embryonically lethal, little is known about how caspase-8 coordinates different PCD pathways under physiological conditions. Here, we report an anti-inflammatory role of caspase-8 during influenza A virus infection. We generated viable mice carrying an uncleavable version of caspase-8 (Casp8DA/DA). We demonstrated that caspase-8 autoprocessing was responsible for activating caspase-3, thereby suppressing gasdermin D-mediated pyroptosis and inflammatory cytokine release. We also found that apoptotic and pyroptotic pathways were activated at the same time during influenza A virus infection, which enabled the cell-intrinsic anti-inflammatory function of the caspase-8-caspase-3 axis. Our findings provide new insight into the immunological consequences of caspase-8-coordinated PCD crosstalk under physiological conditions

    A Trimeric HIV-1 Envelope gp120 Immunogen Induces Potent and Broad Anti-V1V2 Loop Antibodies against HIV-1 in Rabbits and Rhesus Macaques

    No full text
    Trimeric HIV-1 envelope (Env) immunogens are attractive due to their ability to display quaternary epitopes targeted by broadly neutralizing antibodies (bNAbs) while obscuring unfavorable epitopes. Results from the RV144 trial highlighted the importance of vaccine-induced HIV-1 Env V1V2-directed antibodies, with key regions of the V2 loop as targets for vaccine-mediated protection. We recently reported that a trimeric JRFL-gp120 immunogen, generated by inserting an N-terminal trimerization domain in the V1 loop region of a cyclically permuted gp120 (cycP-gp120), induces neutralizing activity against multiple tier-2 HIV-1 isolates in guinea pigs in a DNA prime/protein boost approach. Here, we tested the immunogenicity of cycPgp120 in a protein prime/boost approach in rabbits and as a booster immunization to DNA/modified vaccinia Ankara (MVA)-vaccinated rabbits and rhesus macaques. In rabbits, two cycP-gp120 protein immunizations induced 100-fold higher titers of high-avidity gp120-specific IgG than two gp120 immunizations, with four total gp120 immunizations being required to induce comparable titers. cycP-gp120 also induced markedly enhanced neutralizing activity against tier-1A and -1B HIV-1 isolates, substantially higher binding and breadth to gp70-V1V2 scaffolds derived from a multiclade panel of global HIV-1 isolates, and antibodies targeting key regions of the V2-loop region associated with reduced risk of infection in RV144. Similarly, boosting MVA-or DNA/MVA-primed rabbits or rhesus macaques with cycP-gp120 showed a robust expansion of gp70-V1V2-specific IgG, neutralization breadth to tier-1B HIV-1 isolates, and antibody-dependent cellular cytotoxicity activity. These results demonstrate that cycP-gp120 serves as a robust HIV Env immunogen that induces broad anti-V1V2 antibodies and promotes neutralization breadth against HIV-1. IMPORTANCE Recent focus in HIV-1 vaccine development has been the design of trimeric HIV-1 Env immunogens that closely resemble native HIV-1 Env, with a major goal being the induction of bNAbs. While the generation of bNAbs is considered a gold standard in vaccine-induced antibody responses, results from the RV144 trial showed that nonneutralizing antibodies directed toward the V1V2 loop of HIV-1 gp120, specifically the V2 loop region, were associated with decreased risk of infection, demonstrating the need for the development of Env immunogens that induce a broad anti-V1V2 antibody response. In this study, we show that a novel trimeric gp120 protein, cycP-gp120, generates high titers of high-avidity and broadly cross-reactive anti-V1V2 antibodies, a result not found in animals immunized with monomeric gp120. These results reveal the potential of cycP-gp120 as a vaccine candidate to induce antibodies associated with reduced risk of HIV-1 infection in humans

    DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome.

    No full text
    The cellular stress response has a vital role in regulating homeostasis by modulating cell survival and death. Stress granules are cytoplasmic compartments that enable cells to survive various stressors. Defects in the assembly and disassembly of stress granules are linked to neurodegenerative diseases, aberrant antiviral responses and cancer1-5. Inflammasomes are multi-protein heteromeric complexes that sense molecular patterns that are associated with damage or intracellular pathogens, and assemble into cytosolic compartments known as ASC specks to facilitate the activation of caspase-1. Activation of inflammasomes induces the secretion of interleukin (IL)-1β and IL-18 and drives cell fate towards pyroptosis-a form of programmed inflammatory cell death that has major roles in health and disease6-12. Although both stress granules and inflammasomes can be triggered by the sensing of cellular stress, they drive contrasting cell-fate decisions. The crosstalk between stress granules and inflammasomes and how this informs cell fate has not been well-studied. Here we show that the induction of stress granules specifically inhibits NLRP3 inflammasome activation, ASC speck formation and pyroptosis. The stress granule protein DDX3X interacts with NLRP3 to drive inflammasome activation. Assembly of stress granules leads to the sequestration of DDX3X, and thereby the inhibition of NLRP3 inflammasome activation. Stress granules and the NLRP3 inflammasome compete for DDX3X molecules to coordinate the activation of innate responses and subsequent cell-fate decisions under stress conditions. Induction of stress granules or loss of DDX3X in the myeloid compartment leads to a decrease in the production of inflammasome-dependent cytokines in vivo. Our findings suggest that macrophages use the availability of DDX3X to interpret stress signals and choose between pro-survival stress granules and pyroptotic ASC specks. Together, our data demonstrate the role of DDX3X in driving NLRP3 inflammasome and stress granule assembly, and suggest a rheostat-like mechanistic paradigm for regulating live-or-die cell-fate decisions under stress conditions.T.-D.K. is supported by NIH grants AI101935, AI124346, AR056296 and CA163507 and by the American Lebanese Syrian Associated Charities; the St. Jude Children's Research Hospital Cell and Tissue Imaging Center is supported by St. Jude Children's Research Hospital and by National Cancer Institute grant P30 CA021765-35; R.J.G. is supported by Cancer Research UK, the Mathile Family Foundation, Cure Search, the Sohn Foundation and NIH grants P01CA96832 and R0CA1129541
    corecore