1,002 research outputs found
Interaction between Metal Vapor and High Heat Flux Plasmas using High Current Stabilized Arc Plasmas
All Politics is Local: The Renminbi's Prospects as a Future Global Currency
Recent years have seen a heated discussion over Chinese capital account liberalization and internationalization of China’s currency, the renminbi (RMB). Against the backdrop of a weak U.S. economy and China’s growing international economic clout, there has been speculation about the RMB replacing the U.S. dollar as the world’s leading currency. Subramanian (2011: 1), for instance, maintains that “the renminbi could become the premier reserve currency by the end of this decade, or early next decade.” Much of the current discourse recalls past discussions when other currencies, especially the Japanese yen (Burstein 1988; Kwan 1994; Taguchi 1994) and the Euro (Chinn and Frankel 2007), were seen as candidates to “dethrone” the dollar
Computational exploration of molecular receptive fields in the olfactory bulb reveals a glomerulus-centric chemical map
© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Progress in olfactory research is currently hampered by incomplete knowledge about chemical receptive ranges of primary receptors. Moreover, the chemical logic underlying the arrangement of computational units in the olfactory bulb has still not been resolved. We undertook a large-scale approach at characterising molecular receptive ranges (MRRs) of glomeruli in the dorsal olfactory bulb (dOB) innervated by the MOR18-2 olfactory receptor, also known as Olfr78, with human ortholog OR51E2. Guided by an iterative approach that combined biological screening and machine learning, we selected 214 odorants to characterise the response of MOR18-2 and its neighbouring glomeruli. We found that a combination of conventional physico-chemical and vibrational molecular descriptors performed best in predicting glomerular responses using nonlinear Support-Vector Regression. We also discovered several previously unknown odorants activating MOR18-2 glomeruli, and obtained detailed MRRs of MOR18-2 glomeruli and their neighbours. Our results confirm earlier findings that demonstrated tunotopy, that is, glomeruli with similar tuning curves tend to be located in spatial proximity in the dOB. In addition, our results indicate chemotopy, that is, a preference for glomeruli with similar physico-chemical MRR descriptions being located in spatial proximity. Together, these findings suggest the existence of a partial chemical map underlying glomerular arrangement in the dOB. Our methodology that combines machine learning and physiological measurements lights the way towards future high-throughput studies to deorphanise and characterise structure-activity relationships in olfaction.Peer reviewe
Plectin as a prognostic marker in non-metastatic oral squamous cell carcinoma
Background: Oral squamous cell carcinoma (OSCC) is associated with a poor 5-year survival rate. In general,
patients diagnosed with small tumors have a fairly good prognosis, but some small tumors have an aggressive
behavior leading to early death. There are at present no reliable prognostic biomarkers for oral cancers. Thus, to
optimize treatment for the individual patient, there is a need for biomarkers that can predict tumor behavior.
Method: In the present study the potential prognostic value of plectin was evaluated by a tissue microarray (TMA)
based immunohistochemical analysis of primary tumor tissue obtained from a North Norwegian cohort of 115 patients
diagnosed with OSCC. The expression of plectin was compared with clinicopathological variables and 5 year survival.
Results: The statistical analysis revealed that low expression of plectin in the tumor cells predicted a favorable
outcome for patients with non-metastatic disease (p = 0.008). Furthermore, the expression of plectin was found
to correlate (p = 0.01) with the expression of uPAR, which we have previously found to be a potential prognostic
marker for T1N0 tumors.
Conclusions: Our results indicate that low expression of plectin predicts a favorable outcome for patients with
non-metastatic OSCC and the expression level of plectin may therefore be used in the treatment stratification for
patients with early stage disease
Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions.
Essentially all biological processes depend on protein-protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (~24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner
Aquaporins: important but elusive drug targets.
The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators
Joubert syndrome Arl13b functions at ciliary membranes and stabilizes protein transport in Caenorhabditis elegans
The small ciliary G protein Arl13b is required for cilium biogenesis and sonic hedgehog signaling and is mutated in patients with Joubert syndrome (JS). In this study, using Caenorhabditis elegans and mammalian cell culture systems, we investigated the poorly understood ciliary and molecular basis of Arl13b function. First, we show that Arl13b/ARL-13 localization is frequently restricted to a proximal ciliary compartment, where it associates with ciliary membranes via palmitoylation modification motifs. Next, we find that loss-of-function C. elegans arl-13 mutants possess defects in cilium morphology and ultrastructure, as well as defects in ciliary protein localization and transport; ciliary transmembrane proteins abnormally accumulate, PKD-2 ciliary abundance is elevated, and anterograde intraflagellar transport (IFT) is destabilized. Finally, we show that arl-13 interacts genetically with other ciliogenic and ciliary transport-associated genes in maintaining cilium structure/morphology and anterograde IFT stability. Together, these data implicate a role for JS-associated Arl13b at ciliary membranes, where it regulates ciliary transmembrane protein localizations and anterograde IFT assembly stability
Structure and function analyses of the purified GPCR human vomeronasal type 1 receptor 1
The vomeronasal system is one of several fine-tuned scent-detecting signaling systems in
mammals. However, despite significant efforts, how these receptors detect scent remains an
enigma. One reason is the lack of sufficient purified receptors to perform detailed
biochemical, biophysical and structural analyses. Here we report the ability to express and
purify milligrams of purified, functional human vomeronasal receptor hVN1R1. Circular
dichroism showed that purified hVN1R1 had an alpha-helical structure, similar to that of
other GPCRs. Microscale thermophoresis showed that hVN1R1 bound its known ligand myrtenal
with an EC50 ∼1 µM. This expression system can enable structural and functional
analyses towards understanding how mammalian scent detection works
MiR-34b is associated with clinical outcome in triple-negative breast cancer patients
<p>Abstract</p> <p>Background</p> <p>Breast cancer is the most common malignancy with the highest incidence rates among women worldwide. Triple-negative breast cancer (TNBC) represents the major phenotype of basal-like molecular subtype of breast cancer, characterized by higher incidence in young women and a very poor prognosis. MicroRNAs (miRNAs) are small non-coding RNAs playing significant role in the pathogenesis of many cancers including breast cancer. Therefore, miRNAs are also potential prognostic and/or predictive biomarkers in triple-negative breast cancer patients.</p> <p>Methods</p> <p>Thirty-nine TNBC patients with available formalin-fixed paraffin-embedded (FFPE) tissues were enrolled in the study. MiR-34a, miR-34b, and miR-34c were analyzed using qRT-PCR and correlated to clinico-pathological features of TNBC patients.</p> <p>Results</p> <p>Expression levels of miR-34b significantly correlate with disease free survival (DFS) (<it>p </it>= 0.0020, log-rank test) and overall survival (OS) (<it>p </it>= 0.0008, log-rank test) of TNBC patients. No other significant associations between miR-34a, miR-34b, and miR-34c with available clinical pathological data were observed.</p> <p>Conclusions</p> <p>MiR-34b expression negatively correlates with disease free survival and overall survival in TNBC patients. Thus, miR-34b may present a new promising prognostic biomarker in TNBC patients, but independent validations are necessary.</p
- …
