31 research outputs found

    The effectiveness of Stepping stones Triple P: the design of a randomised controlled trial on a parenting programme regarding children with mild intellectual disability and psychosocial problems versus care as usual

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Children with an intellectual disability are at increased risk of psychosocial problems. This leads to serious restrictions in the daily functioning of the children and to parental stress. Stepping Stones Triple P aims to prevent severe behavioural, emotional and developmental problems in children with a (intellectual) disability by enhancing parenting knowledge and skills, and the self-confidence of parents. This paper aims to describe the design of a study of the effectiveness of parenting counselling using Stepping Stones Triple P compared to Care as Usual.</p> <p>Methods/Design</p> <p>The effects of Stepping Stones Triple P will be studied in a Randomised Controlled Trial. Parents of children aged 5-12 years with an IQ of 50-85 will be recruited from schools. Prior to randomisation, parents complete a screening questionnaire about their child's psychosocial problems and their parenting skills. Subsequently, parents of children with increased levels of psychosocial problems (score on Strengths and Difficulties Questionnaire ≥ 14) will be invited to participate in the intervention study. After obtaining consent, parents will be randomised either to the experimental group (Stepping Stones Triple P) or to Care as Usual. The primary outcome is a change in the child's psychosocial problems according to parents and teachers. The secondary outcome is a change in parenting skills. Data will be collected before the start of the intervention, immediately after the intervention, and six months after.</p> <p>Discussion</p> <p>This paper presents an outline of the background and design of a randomised controlled trial to investigate the effectiveness of Stepping Stones Triple P, which aims to decrease psychosocial problems in children with a mild intellectual disability. Stepping Stones Triple P seems promising, but evidence on its effectiveness for this population is still lacking. This study provides evidence about the effects of this intervention in a community-based population of children with a mild intellectual disability.</p> <p>Trial registration</p> <p>Netherlands Trial Register (NTR): <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=NTR2624">NTR2624</a></p

    Exploiting Mitochondrial Dysfunction for Effective Elimination of Imatinib-Resistant Leukemic Cells

    Get PDF
    Challenges today concern chronic myeloid leukemia (CML) patients resistant to imatinib. There is growing evidence that imatinib-resistant leukemic cells present abnormal glucose metabolism but the impact on mitochondria has been neglected. Our work aimed to better understand and exploit the metabolic alterations of imatinib-resistant leukemic cells. Imatinib-resistant cells presented high glycolysis as compared to sensitive cells. Consistently, expression of key glycolytic enzymes, at least partly mediated by HIF-1α, was modified in imatinib-resistant cells suggesting that imatinib-resistant cells uncouple glycolytic flux from pyruvate oxidation. Interestingly, mitochondria of imatinib-resistant cells exhibited accumulation of TCA cycle intermediates, increased NADH and low oxygen consumption. These mitochondrial alterations due to the partial failure of ETC were further confirmed in leukemic cells isolated from some imatinib-resistant CML patients. As a consequence, mitochondria generated more ROS than those of imatinib-sensitive cells. This, in turn, resulted in increased death of imatinib-resistant leukemic cells following in vitro or in vivo treatment with the pro-oxidants, PEITC and Trisenox, in a syngeneic mouse tumor model. Conversely, inhibition of glycolysis caused derepression of respiration leading to lower cellular ROS. In conclusion, these findings indicate that imatinib-resistant leukemic cells have an unexpected mitochondrial dysfunction that could be exploited for selective therapeutic intervention

    GILZ inhibits the mTORC2/AKT pathway in BCR-ABL+ cells

    Get PDF
    The malignant phenotype of chronic myeloid leukemia (CML) is due to the abnormal tyrosine kinase activity of the BCR-ABL oncoprotein, which signals several downstream cell survival pathways, including phosphoinositide 3-kinase/AKT, signal transducer and activator of transcription 5 and extracellular signal-regulated kinase 1/2. In patients with CML, tyrosine kinase inhibitors (TKIs) are used to suppress the BCR-ABL tyrosine kinase, resulting in impressive response rates. However, resistance can occur, especially in acute-phase CML, through various mechanisms. Here, we show that the glucocorticoid-induced leucine zipper protein (GILZ) modulates imatinib and dasatinib resistance and suppresses tumor growth by inactivating the mammalian target of rapamycin complex-2 (mTORC2)/AKT signaling pathway. In mouse and human models, GILZ binds to mTORC2, but not to mTORC1, inhibiting phosphorylation of AKT (at Ser473) and activating FoxO3a-mediated transcription of the pro-apoptotic protein Bim; these results demonstrate that GILZ is a key inhibitor of the mTORC2 pathway. Furthermore, CD34+ stem cells isolated from relapsing CML patients underwent apoptosis and showed inhibition of mTORC2 after incubation with glucocorticoids and imatinib. Our findings provide new mechanistic insights into the role of mTORC2 in BCR-ABL+ cells and indicate that regulation by GILZ may influence TKI sensitivity

    Functional anatomy of the human microprocessor

    No full text
    MicroRNA (miRNA) maturation is initiated by Microprocessor composed of RNase III DROSHA and its cofactor DGCR8, whose fidelity is critical for generation of functional miRNAs. To understand how Microprocessor recognizes pri-miRNAs, we here reconstitute human Microprocessor with purified recombinant proteins. We find that Microprocessor is an ∼ 364 kDa heterotrimeric complex of one DROSHA and two DGCR8 molecules. Together with a 23-amino acid peptide from DGCR8, DROSHA constitutes a minimal functional core. DROSHA serves as a ruler by measuring 11 bp from the basal ssRNA-dsRNA junction. DGCR8 interacts with the stem and apical elements through its dsRNA-binding domains and RNA-binding heme domain, respectively, allowing efficient and accurate processing. DROSHA and DGCR8, respectively, recognize the basal UG and apical UGU motifs, which ensure proper orientation of the complex. These findings clarify controversies over the action mechanism of DROSHA and allow us to build a general model for pri-miRNA processing. © 2015 Elsevier Inc181831sciescopu

    Functional anatomy of the human microprocessor

    No full text
    MicroRNA (miRNA) maturation is initiated by Microprocessor composed of RNase III DROSHA and its cofactor DGCR8, whose fidelity is critical for generation of functional miRNAs. To understand how Microprocessor recognizes pri-miRNAs, we here reconstitute human Microprocessor with purified recombinant proteins. We find that Microprocessor is an similar to 364 kDa heterotrimeric complex of one DROSHA and two DGCR8 molecules. Together with a 23-amino acid peptide from DGCR8, DROSHA constitutes a minimal functional core. DROSHA serves as a "ruler'' by measuring 11 bp from the basal ssRNA-dsRNA junction. DGCR8 interacts with the stem and apical elements through its dsRNA-binding domains and RNA-binding heme domain, respectively, allowing efficient and accurate processing. DROSHA and DGCR8, respectively, recognize the basal UG and apical UGU motifs, which ensure proper orientation of the complex. These findings clarify controversies over the action mechanism of DROSHA and allow us to build a general model for pri-miRNA processing
    corecore