3,305 research outputs found
Symmetric Strategy Improvement
Symmetry is inherent in the definition of most of the two-player zero-sum
games, including parity, mean-payoff, and discounted-payoff games. It is
therefore quite surprising that no symmetric analysis techniques for these
games exist. We develop a novel symmetric strategy improvement algorithm where,
in each iteration, the strategies of both players are improved simultaneously.
We show that symmetric strategy improvement defies Friedmann's traps, which
shook the belief in the potential of classic strategy improvement to be
polynomial
Local Strategy Improvement for Parity Game Solving
The problem of solving a parity game is at the core of many problems in model
checking, satisfiability checking and program synthesis. Some of the best
algorithms for solving parity game are strategy improvement algorithms. These
are global in nature since they require the entire parity game to be present at
the beginning. This is a distinct disadvantage because in many applications one
only needs to know which winning region a particular node belongs to, and a
witnessing winning strategy may cover only a fractional part of the entire game
graph.
We present a local strategy improvement algorithm which explores the game
graph on-the-fly whilst performing the improvement steps. We also compare it
empirically with existing global strategy improvement algorithms and the
currently only other local algorithm for solving parity games. It turns out
that local strategy improvement can outperform these others by several orders
of magnitude
Recommended from our members
SITE CHARACTERIZATION AND SELECTION GUIDELINES FOR GEOLOGICAL CARBON SEQUESTRATION
Carbon capture and sequestration (CCS) is a key technology pathway to substantial reduction of greenhouse gas emissions for the state of California and the western region. Current estimates suggest that the sequestration resource of the state is large, and could safely and effectively accept all of the emissions from large CO2 point sources for many decades and store them indefinitely. This process requires suitable sites to sequester large volumes of CO2 for long periods of time. Site characterization is the first step in this process, and the state will ultimately face regulatory, legal, and technical questions as commercial CCS projects develop and commence operations. The most important aspects of site characterizations are injectivity, capacity, and effectiveness. A site can accept at a high rate a large volume of CO2 and store it for a long time is likely to serve as a good site for geological carbon sequestration. At present, there are many conventional technologies and approaches that can be used to estimate, quantify, calculate, and assess the viability of a sequestration site. Any regulatory framework would need to rely on conventional, easily executed, repeatable methods to inform the site selection and permitting process. The most important targets for long-term storage are deep saline formations and depleted oil and gas fields. The primary CO2 storage mechanisms for these targets are well understood enough to plan operations and simulate injection and long-term fate of CO2. There is also a strong understanding of potential geological and engineering hazards for CCS. These hazards are potential pathway to CO2 leakage, which could conceivably result in negative consequences to health and the environmental. The risks of these effects are difficult to quantify; however, the hazards themselves are sufficiently well understood to identify, delineate, and manage those risks effectively. The primary hazard elements are wells and faults, but may include other concerns as well. There is less clarity regarding the legal and regulatory issues around site characterization for large CCS injection volumes. In particular, it is not clear what would constitute due diligence for a potential selection and operation of a commercial site. This is complicated by a lack of clarity around permitting issues and subsurface ownership. However, there are many natural, industrial, regulatory, and legal analogs for these questions. However, solutions will need to evolve within the set of laws and practices current to the State. The chief conclusion of this chapter is that there is enough knowledge today to characterize a site for geological carbon sequestration safely and effective permitting and operation. From this conclusion and others flow a set of recommendations that represent potential actions for decision makers
Recommended from our members
The scientific case for large CO2 storage projects worldwide: Where they should go, what they should look like, and how much they should cost
To achieve substantial GHG reductions through carbon capture and storage (CCS) requires 100's to 1000's of large volume injection facilities distributed globally with very low rates and volumes of leakage. Several large-scale projects exist (Weyburn, Sleipner, In-Salah) and each has revealed an important aspect of the geology that was not previously known. This reaffirms the notion that key geological thresholds in the earth's crust are sensitive to the magnitude and rate of excursions, (e.g., pressure build-up, pH). Because commercial-scale CCS will reach these thresholds, a suite of large-scale projects is needed to investigate the conditions for successful deployment. These projects must cover a range of geological and geographic settings and key plays. Moreover, they must be supported by a sufficiently large science and technology program to understand the key features, events, and processes in each case to address stakeholder concerns and develop operational guidelines for large-scale deployment
Recommended from our members
Defining an end state for CO2 sequestration and EOR in North America
CO{sub 2} capture and storage (CCS) presents a challenge to long-range planners, economic interests, regulators, law-makers, and other stakeholders and decision makers. To improve and optimize the use of limited resources and finances, it is important to define an end state for CCS. This ends state should be defined around desired goals and reasonable timelines for execution. While this definition may have substantial technology, policy or economic implications, it need not be prescriptive in terms of technology pathway, policy mechanism, or economic targets. To illustrate these concerns, this paper will present a credible vision of what an end state for North American might look like. From that, examples of key investment and planning decisions are provided to illustrate the value of end-state characterization
Recommended from our members
Integration & Co-development of a Geophysical CO2 Monitoring Suite
Carbon capture and sequestration (CCS) has emerged as a key technology for dramatic short-term reduction in greenhouse gas emissions in particular from large stationary. A key challenge in this arena is the monitoring and verification (M&V) of CO2 plumes in the deep subsurface. Towards that end, we have developed a tool that can simultaneously invert multiple sub-surface data sets to constrain the location, geometry, and saturation of subsurface CO2 plumes. We have focused on a suite of unconventional geophysical approaches that measure changes in electrical properties (electrical resistance tomography, electromagnetic induction tomography) and bulk crustal deformation (til-meters). We had also used constraints of the geology as rendered in a shared earth model (ShEM) and of the injection (e.g., total injected CO{sub 2}). We describe a stochastic inversion method for mapping subsurface regions where CO{sub 2} saturation is changing. The technique combines prior information with measurements of injected CO{sub 2} volume, reservoir deformation and electrical resistivity. Bayesian inference and a Metropolis simulation algorithm form the basis for this approach. The method can (a) jointly reconstruct disparate data types such as surface or subsurface tilt, electrical resistivity, and injected CO{sub 2} volume measurements, (b) provide quantitative measures of the result uncertainty, (c) identify competing models when the available data are insufficient to definitively identify a single optimal model and (d) rank the alternative models based on how well they fit available data. We present results from general simulations of a hypothetical case derived from a real site. We also apply the technique to a field in Wyoming, where measurements collected during CO{sub 2} injection for enhanced oil recovery serve to illustrate the method's performance. The stochastic inversions provide estimates of the most probable location, shape, volume of the plume and most likely CO{sub 2} saturation. The results suggest that the method can reconstruct data with poor signal to noise ratio and use hard constraints available from many sites and applications. External interest in the approach and method is high, and already commercial and DOE entities have requested technical work using the newly developed methodology for CO{sub 2} monitoring
Recommended from our members
Testimony for the CA Assembly Legislature Utilities and Commerce Committee
Let me begin by thanking the Committee and the Assembly for inviting me to speak and present information on the topic of carbon capture and storage (sometimes called carbon sequestration or geosequestration). I am a research scientist at the Lawrence Livermore National Laboratory (LLNL) leading the Carbon Management Program. Our Laboratory is administered by the University of California for the Department of Energy's National Nuclear Security Administration. Lawrence Livermore is a multi-program laboratory with special responsibilities in national security and state-of-the-art experimental and computational capabilities that are also applied to meet other pressing national needs. In particular, LLNL pursues a broad portfolio of innovative research and development programs in energy and environmental sciences, including carbon capture and storage. It is an honor, and I believe the time is good to discuss this very promising technology pathway for greenhouse gas emissions reduction. Here I will describe the current state of knowledge and practice for carbon capture and storage, and highlight specific opportunities for benefit by deployment in California
Explaining the Electroweak Scale and Stabilizing Moduli in M Theory
In a recent paper \cite{Acharya:2006ia} it was shown that in theory vacua
without fluxes, all moduli are stabilized by the effective potential and a
stable hierarchy is generated, consistent with standard gauge unification. This
paper explains the results of \cite{Acharya:2006ia} in more detail and
generalizes them, finding an essentially unique de Sitter (dS) vacuum under
reasonable conditions. One of the main phenomenological consequences is a
prediction which emerges from this entire class of vacua: namely gaugino masses
are significantly suppressed relative to the gravitino mass. We also present
evidence that, for those vacua in which the vacuum energy is small, the
gravitino mass, which sets all the superpartner masses, is automatically in the
TeV - 100 TeV range.Comment: 73 pages, 39 figures, Minor typos corrected, Figures and References
adde
Recommended from our members
Timing and prediction of CO2 eruptions from Crystal Geyser, UT
Special instruments were deployed at Crystal Geyser, Utah, in August 2005 creating a contiguous 76-day record of eruptions from this cold geyser. Sensors measured temperature and fluid movement at the base of the geyser. Analysis of the time series that contains the start time and duration of 140 eruptions reveals a striking bimodal distribution in eruption duration. About two thirds of the eruptions were short (7-32 min), and about one third were long (98-113 min). No eruption lasted between 32 and 98 min. There is a strong correlation between the duration of an eruption and the subsequent time until the next eruption. A linear least-squares fit of these data can be used to predict the time of the next eruption. The predictions were within one hour of actual eruption time for 90% of the very short eruptions (7-19 min), and about 45% of the long eruptions. Combined with emission estimates from a previous study, we estimate the annual CO{sub 2} emission from Crystal Geyser to be about 11 gigagrams (11,000 tons)
Geometric structure of the generic static traversable wormhole throat
Traversable wormholes have traditionally been viewed as intrinsically
topological entities in some multiply connected spacetime. Here, we show that
topology is too limited a tool to accurately characterize a generic traversable
wormhole: in general one needs geometric information to detect the presence of
a wormhole, or more precisely to locate the wormhole throat. For an arbitrary
static spacetime we shall define the wormhole throat in terms of a
2-dimensional constant-time hypersurface of minimal area. (Zero trace for the
extrinsic curvature plus a "flare-out" condition.) This enables us to severely
constrain the geometry of spacetime at the wormhole throat and to derive
generalized theorems regarding violations of the energy conditions-theorems
that do not involve geodesic averaging but nevertheless apply to situations
much more general than the spherically symmetric Morris-Thorne traversable
wormhole. [For example: the null energy condition (NEC), when suitably weighted
and integrated over the wormhole throat, must be violated.] The major technical
limitation of the current approach is that we work in a static spacetime-this
is already a quite rich and complicated system.Comment: 25 pages; plain LaTeX; uses epsf.sty (four encapsulated postscript
figures
- …