163 research outputs found

    Bifurcation Phenomenon in a Spin Relaxation

    Full text link
    Spin relaxation in a strong-coupling regime (with respect to the spin system) is investigated in detail based on the spin-boson model in a stochastic limit. We find a bifurcation phenomenon in temperature dependence of relaxation constants, which is never observed in the weak-coupling regime. We also discuss inequalities among the relaxation constants in our model and show the well-known relation 2\Gamma_T >= \Gamma_L, for example, for a wider parameter region than before.Comment: REVTeX4, 5 pages, 5 EPS figure

    Time of arrival through interacting environments: Tunneling processes

    Full text link
    We discuss the propagation of wave packets through interacting environments. Such environments generally modify the dispersion relation or shape of the wave function. To study such effects in detail, we define the distribution function P_{X}(T), which describes the arrival time T of a packet at a detector located at point X. We calculate P_{X}(T) for wave packets traveling through a tunneling barrier and find that our results actually explain recent experiments. We compare our results with Nelson's stochastic interpretation of quantum mechanics and resolve a paradox previously apparent in Nelson's viewpoint about the tunneling time.Comment: Latex 19 pages, 11 eps figures, title modified, comments and references added, final versio

    From the cell membrane to the nucleus: unearthing transport mechanisms for Dynein

    Get PDF
    Mutations in the motor protein cytoplasmic dynein have been found to cause Charcot-Marie-Tooth disease, spinal muscular atrophy, and severe intellectual disabilities in humans. In mouse models, neurodegeneration is observed. We sought to develop a novel model which could incorporate the effects of mutations on distance travelled and velocity. A mechanical model for the dynein mediated transport of endosomes is derived from first principles and solved numerically. The effects of variations in model parameter values are analysed to find those that have a significant impact on velocity and distance travelled. The model successfully describes the processivity of dynein and matches qualitatively the velocity profiles observed in experiments

    The Exact Correspondence between Phase Times and Dwell Times in a Symmetrical Quantum Tunneling Configuration

    Full text link
    The general and explicit relation between the phase time and the dwell time for quantum tunneling or scattering is investigated. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, here we demonstrate that these two distinct transit time definitions give connected results where, however, the phase time (group delay) accurately describes the exact position of the scattered particles. The analytical difficulties that arise when the stationary phase method is employed for obtaining phase (traversal) times are all overcome. Multiple wave packet decomposition allows us to recover the exact position of the reflected and transmitted waves in terms of the phase time, which, in addition to the exact relation between the phase time and the dwell time, leads to right interpretation for both of them.Comment: 11 pages, 2 figure

    Small Corrections to the Tunneling Phase Time Formulation

    Full text link
    After reexamining the above barrier diffusion problem where we notice that the wave packet collision implies the existence of {\em multiple} reflected and transmitted wave packets, we analyze the way of obtaining phase times for tunneling/reflecting particles in a particular colliding configuration where the idea of multiple peak decomposition is recovered. To partially overcome the analytical incongruities which frequently rise up when the stationary phase method is adopted for computing the (tunneling) phase time expressions, we present a theoretical exercise involving a symmetrical collision between two identical wave packets and a unidimensional squared potential barrier where the scattered wave packets can be recomposed by summing the amplitudes of simultaneously reflected and transmitted wave components so that the conditions for applying the stationary phase principle are totally recovered. Lessons concerning the use of the stationary phase method are drawn.Comment: 14 pages, 3 figure
    • ā€¦
    corecore