128 research outputs found

    Urinary Polycyclic Aromatic Hydrocarbon Metabolites and Attention/Deficit Hyperactivity Disorder, Learning Disability, and Special Education in U.S. Children Aged 6 to 15

    Get PDF
    Exposure to polycyclic aromatic hydrocarbons (PAHs) adversely affects child neurodevelopment, but little is known about the relationship between PAHs and clinically significant developmental disorders. We examined the relationship between childhood measures of PAH exposure and prevalence of attention deficit/hyperactivity disorder (ADHD), learning disability (LD), and special education (SE) in a nationally representative sample of 1,257 U.S. children 6–15 years of age. Data were obtained from the National Health and Nutrition Examination Survey (NHANES) 2001–2004. PAH exposure was measured by urinary metabolite concentrations. Outcomes were defined by parental report of (1) ever doctor-diagnosed ADHD, (2) ever doctor- or school representative-identified LD, and (3) receipt of SE or early intervention services. Multivariate logistic regression accounting for survey sampling was used to determine the associations between PAH metabolites and ADHD, LD, and SE. Children exposed to higher levels of fluorine metabolites had a 2-fold increased odds (95% C.I. 1.1, 3.8) of SE, and this association was more apparent in males (OR 2.3; 95% C.I. 1.2, 4.1) than in females (OR 1.8; 95% C.I. 0.6, 5.4). No other consistent pattern of developmental disorders was associated with urinary PAH metabolites. However, concurrent exposure to PAH fluorine metabolites may increase use of special education services among U.S. children

    Life satisfaction for adolescents with developmental and behavioral disabilities during the COVID-19 pandemic

    Get PDF
    Background: This study aimed to identify contextual factors associated with life satisfaction during the COVID-19 pandemic for adolescents with mental, emotional, behavioral, and developmental (MEBD) disabilities. Methods: Data were collected from a sample of 1084 adolescents aged 11–21 years from April 2020 to August 2021. This cross-sectional study used a sequential machine learning workflow, consisting of random forest regression and evolutionary tree regression, to identify subgroups of adolescents in the Environmental influences on Child Health Outcomes (ECHO) consortium who demonstrated enhanced vulnerability to lower life satisfaction as described by intersecting risk factors, protective factors, and MEBD disabilities. Results: Adolescents with a history of depression, anxiety, autism, and attention-deficit/hyperactivity disorder were particularly susceptible to decreased life satisfaction in response to unique combinations of stressors experienced during the COVID-19 pandemic. These stressors included decreased social connectedness, decreased family engagement, stress related to medical care access, pandemic-related traumatic stress, and single-caregiver households. Conclusion: Findings from this study highlight the importance of interventions aimed specifically at increasing adolescent social connectedness, family engagement, and access to medical support for adolescents with MEBD disabilities, particularly in the face of stressors, such as a global pandemic. Impact: Through a machine learning process, we identified contextualized risks associated with life satisfaction among adolescents with neurodevelopmental disabilities during the COVID-19 pandemic.The COVID-19 pandemic resulted in large-scale social disruptions for children and families. Such disruptions were associated with worse mental health outcomes in the general pediatric population, but few studies have examined specific subgroups who may be at heightened risk. We endeavored to close that gap in knowledge.This study highlights the importance of social connectedness, family engagement, and access to medical support as contributing factors to life satisfaction during the COVID-19 pandemic for adolescents with neurodevelopmental disabilities

    Placental transfer of the polybrominated diphenyl ethers BDE-47, BDE-99 and BDE-209 in a human placenta perfusion system: an experimental study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants in consumer products. PBDEs may affect thyroid hormone homeostasis, which can result in irreversible damage of cognitive performance, motor skills and altered behaviour. Thus, in utero exposure is of very high concern due to critical windows in fetal development.</p> <p>Methods</p> <p>A human ex vivo placenta perfusion system was used to study the kinetics and extent of the placental transfer of BDE-47, BDE-99 and BDE-209 during four-hour perfusions. The PBDEs were added to the maternal circulation and monitored in the maternal and fetal compartments. In addition, the perfused cotyledon, the surrounding placental tissue as well as pre-perfusion placental tissue and umbilical cord plasma were also analysed. The PBDE analysis included Soxhlet extraction, clean-up by adsorption chromatography and GC-MS analysis.</p> <p>Results and Discussion</p> <p>Placental transfer of BDE-47 was faster and more extensive than for BDE-99. The fetal-maternal ratios (FM-ratio) after four hours of perfusion were 0.47 and 0.25 for BDE-47 and BDE-99, respectively, while the indicative permeability coefficient (IPC) measured after 60 minutes of perfusion was 0.26 h<sup>-1 </sup>and 0.10 h<sup>-1</sup>, respectively. The transport of BDE-209 seemed to be limited. These differences between the congeners may be related to the degree of bromination. Significant accumulation was observed for all congeners in the perfused cotyledon as well as in the surrounding placental tissue.</p> <p>Conclusion</p> <p>The transport of BDE-47 and BDE-99 indicates in utero exposure to these congeners. Although the transport of BDE-209 was limited, however, possible metabolic debromination may lead to products which are both more toxic and transportable. Our study demonstrates fetal exposure to PBDEs, which should be included in risk assessment of PBDE exposure of women of child-bearing age.</p

    Relation of DNA Methylation of 5′-CpG Island of ACSL3 to Transplacental Exposure to Airborne Polycyclic Aromatic Hydrocarbons and Childhood Asthma

    Get PDF
    In a longitudinal cohort of ∼700 children in New York City, the prevalence of asthma (>25%) is among the highest in the US. This high risk may in part be caused by transplacental exposure to traffic-related polycyclic aromatic hydrocarbons (PAHs) but biomarkers informative of PAH-asthma relationships is lacking. We here hypothesized that epigenetic marks associated with transplacental PAH exposure and/or childhood asthma risk could be identified in fetal tissues. Mothers completed personal prenatal air monitoring for PAH exposure determination. Methylation sensitive restriction fingerprinting was used to analyze umbilical cord white blood cell (UCWBC) DNA of 20 cohort children. Over 30 DNA sequences were identified whose methylation status was dependent on the level of maternal PAH exposure. Six sequences were found to be homologous to known genes having one or more 5′-CpG island(s) (5′-CGI). Of these, acyl-CoA synthetase long-chain family member 3 (ACSL3) exhibited the highest concordance between the extent of methylation of its 5′-CGI in UCWBCs and the level of gene expression in matched fetal placental tissues in the initial 20 cohort children. ACSL3 was therefore chosen for further investigation in a larger sample of 56 cohort children. Methylation of the ACSL3 5′-CGI was found to be significantly associated with maternal airborne PAH exposure exceeding 2.41 ng/m3 (OR = 13.8; p<0.001; sensitivity = 75%; specificity = 82%) and with a parental report of asthma symptoms in children prior to age 5 (OR = 3.9; p<0.05). Thus, if validated, methylated ACSL3 5′CGI in UCWBC DNA may be a surrogate endpoint for transplacental PAH exposure and/or a potential biomarker for environmentally-related asthma. This exploratory report provides a new blueprint for the discovery of epigenetic biomarkers relevant to other exposure assessments and/or investigations of exposure-disease relationships in birth cohorts. The results support the emerging theory of early origins of later life disease development

    Temporal Comparison of PBDEs, OH-PBDEs, PCBs, and OH-PCBs in the Serum of Second Trimester Pregnant Women Recruited from San Francisco General Hospital, California

    Full text link
    Prenatal exposures to polybrominated diphenyl ethers (PBDEs) can harm neurodevelopment in humans and animals. In 2003–2004, PentaBDE and OctaBDE were banned in California and phased-out of US production; resulting impacts on human exposures are unknown. We previously reported that median serum concentrations of PBDEs and their metabolites (OH-PBDEs) among second trimester pregnant women recruited from San Francisco General Hospital (2008–2009; n=25) were the highest among pregnant women worldwide. We recruited another cohort from the same clinic in 2011–2012 (n=36) and now compare serum concentrations of PBDEs, OH-PBDEs, polychlorinated biphenyl ethers (PCBs) (structurally similar compounds banned in 1979), and OH-PCBs between two demographically similar cohorts. Between 2008–2009 and 2011–2012, adjusted least square geometric mean (LSGM) concentrations of ΣPBDEs decreased 65% (95% CI: 18, 130) from 90.0 ng/g lipid (95% CI: 64.7,125.2) to 54.6 ng/g lipid (95% CI: 39.2, 76.2) (p=0.004); Σ OH-PBDEs decreased six-fold (p<0.0001); and BDE-47, -99, and -100 declined more than BDE-153. There was a modest, non-significant (p=0.13) decline in LSGM concentrations of ΣPCBs and minimal differences in ΣOH-PCBs between 2008–2009 and 2011–2012. PBDE exposures are likely declining due to regulatory action, but the relative stability in PCB exposures suggests PBDE exposures may eventually plateau and persist for decades

    Development and Psychometric Validation of the Pandemic-Related Traumatic Stress Scale for Children and Adults

    Get PDF
    To assess the public health impact of the COVID-19 pandemic on mental health, investigators from the National Institutes of Health Environmental influences on Child Health Outcomes (ECHO) research program developed the Pandemic-Related Traumatic Stress Scale (PTSS). Based on the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) acute stress disorder symptom criteria, the PTSS is designed for adolescent (13–21 years) and adult self-report and caregiver-report on 3–12-year-olds. To evaluate psychometric properties, we used PTSS data collected between April 2020 and August 2021 from non-pregnant adult caregivers (n = 11,483), pregnant/postpartum individuals (n = 1,656), adolescents (n = 1,795), and caregivers reporting on 3–12-year-olds (n = 2,896). We used Mokken scale analysis to examine unidimensionality and reliability, Pearson correlations to evaluate relationships with other relevant variables, and analyses of variance to identify regional, age, and sex differences. Mokken analysis resulted in a moderately strong, unidimensional scale that retained nine of the original 10 items. We detected small to moderate positive associations with depression, anxiety, and general stress, and negative associations with life satisfaction. Adult caregivers had the highest PTSS scores, followed by adolescents, pregnant/postpartum individuals, and children. Caregivers of younger children, females, and older youth had higher PTSS scores compared to caregivers of older children, males, and younger youth, respectively
    • …
    corecore