179 research outputs found

    Transition of plasmodium sporozoites into liver stage-like forms is regulated by the RNA binding protein pumilio

    Get PDF
    Many eukaryotic developmental and cell fate decisions that are effected post-transcriptionally involve RNA binding proteins as regulators of translation of key mRNAs. In malaria parasites (Plasmodium spp.), the development of round, non-motile and replicating exo-erythrocytic liver stage forms from slender, motile and cell-cycle arrested sporozoites is believed to depend on environmental changes experienced during the transmission of the parasite from the mosquito vector to the vertebrate host. Here we identify a Plasmodium member of the RNA binding protein family PUF as a key regulator of this transformation. In the absence of Pumilio-2 (Puf2) sporozoites initiate EEF development inside mosquito salivary glands independently of the normal transmission-associated environmental cues. Puf2- sporozoites exhibit genome-wide transcriptional changes that result in loss of gliding motility, cell traversal ability and reduction in infectivity, and, moreover, trigger metamorphosis typical of early Plasmodium intra-hepatic development. These data demonstrate that Puf2 is a key player in regulating sporozoite developmental control, and imply that transformation of salivary gland-resident sporozoites into liver stage-like parasites is regulated by a post-transcriptional mechanism

    Environmental Constraints Guide Migration of Malaria Parasites during Transmission

    Get PDF
    Migrating cells are guided in complex environments mainly by chemotaxis or structural cues presented by the surrounding tissue. During transmission of malaria, parasite motility in the skin is important for Plasmodium sporozoites to reach the blood circulation. Here we show that sporozoite migration varies in different skin environments the parasite encounters at the arbitrary sites of the mosquito bite. In order to systematically examine how sporozoite migration depends on the structure of the environment, we studied it in micro-fabricated obstacle arrays. The trajectories observed in vivo and in vitro closely resemble each other suggesting that structural constraints can be sufficient to guide Plasmodium sporozoites in complex environments. Sporozoite speed in different environments is optimized for migration and correlates with persistence length and dispersal. However, this correlation breaks down in mutant sporozoites that show adhesion impairment due to the lack of TRAP-like protein (TLP) on their surfaces. This may explain their delay in infecting the host. The flexibility of sporozoite adaption to different environments and a favorable speed for optimal dispersal ensures efficient host switching during malaria transmission

    Comparison of the application of low concentration and 80% phenol solution in pilonidal sinus disease

    Get PDF
    Objectives Many conservative methods have been applied in the treatment of pilonidal sinus disease (PSD). The most commonly used conservative treatment is 80% phenol solution. Our observations demonstrated that 80% phenol solution caused much destruction in the sacrococcygeal region. Design In this study low concentrations of phenol were used with the aim of reducing the unwanted side-effects of high-concentration phenol without reducing the therapeutic effects. Participants We treated 112 patients (18 women, 94 men) with PSD using phenol solution. Patients were divided into two groups: Group A was treated with a 40% solution of phenol solution, and Group B was treated with an 80% solution of phenol solution. Setting All patients were treated on an outpatient basis. One mL of low (40%) or high (80%) concentration phenol solution was injected into the main sinus orifice. During the check it was observed and noted whether there was skin necrosis, fatty tissue necrosis or abscesses. Main outcome measures The mean age was 27.4 years (6–44). The median length of symptoms was seven months (0.5–132). In the 2.8 years (1–6) of mean follow-up period, the disease recurred in 13 (11.6%) patients. Results This treatment procedure was well-tolerated by all the patients except for those who had unwanted results. No patients in group A had skin necrosis, and only one had abscesses. In group B two patients had abscesses, and three had skin necrosis. Fatty tissue necrosis was seen in one patient in Group A and in five patients in Group B. Recurrence rates were four (7.4%) cases in Group A and nine (15.5%) cases in Group B. Conclusions It is possible to treat patients in a shorter time with a considerably smaller loss of working time, since the destruction of peripilonidal adipose tissue and skin is less. Therefore, the use of low-concentration phenol solution is an option to be considered in the treatment of PSD.PubMe

    Performance of the multiband imaging photometer for SIRTF

    Get PDF
    We describe the test approaches and results for the Multiband Imaging Photometer for SIRTF. To verify the performance within a `faster, better, cheaper' budget required innovations in the test plan, such as heavy reliance on measurements with optical photons to determine instrument alignment, and use of an integrating sphere rather than a telescope to feed the completed instrument at its operating temperature. The tests of the completed instrument were conducted in a cryostat of unique design that allowed us to achieve the ultra-low background levels the instrument will encounter in space. We controlled the instrument through simulators of the mission operations control system and the SIRTF spacecraft electronics, and used cabling virtually identical to that which will be used in SIRTF. This realistic environment led to confidence in the ultimate operability of the instrument. The test philosophy allowed complete verification of the instrument performance and showed it to be similar to pre-integration predictions and to meet the instrument requirements

    Six sequence variants on chromosome 9p21.3 are associated with a positive family history of myocardial infarction: a multicenter registry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent genome-wide association studies have identified several genetic loci linked to coronary artery disease (CAD) and myocardial infarction (MI). The 9p21.3 locus was verified by numerous replication studies to be the first common locus for CAD and MI. In the present study, we investigated whether six single nucleotide polymorphisms (SNP) rs1333049, rs1333040, rs10757274, rs2383206, rs10757278, and rs2383207 representing the 9p21.3 locus were associated with the incidence of an acute MI in patients with the main focus on the familial aggregation of the disease.</p> <p>Methods</p> <p>The overall cohort consisted of 976 unrelated male patients presenting with an acute coronary syndrome (ACS) with ST-elevated (STEMI) as well as non-ST-elevated myocardial infarction (NSTEMI). Genotyping data of the investigated SNPs were generated and statistically analyzed in comparison to previously published findings of matchable control cohorts.</p> <p>Results</p> <p>Statistical evaluation confirmed a highly significant association of all analyzed SNP's with the occurrence of MI (p < 0.0001; OR: 1.621-2.039). When only MI patients with a positive family disposition were comprised in the analysis a much stronger association of the accordant risk alleles with incident disease was found with odds ratios up to 2.769.</p> <p>Conclusions</p> <p>The findings in the present study confirmed a strong association of the 9p21.3 locus with MI particularly in patients with a positive family history thereby, emphasizing the pathogenic relevance of this locus as a common genetic cardiovascular risk factor.</p

    Force spectroscopy in studying infection

    Get PDF
    Biophysical force spectroscopy tools - for example optical tweezers, magnetic tweezers, atomic force microscopy, - have been used to study elastic, mechanical, conformational and dynamic properties of single biological specimens from single proteins to whole cells to reveal information not accessible by ensemble average methods such as X-ray crystallography, mass spectroscopy, gel electrophoresis and so on. Here we review the application of these tools on a range of infection-related questions from antibody-inhibited protein processivity to virus-cell adhesion. In each case we focus on how the instrumental design tailored to the biological system in question translates into the functionality suitable for that particular study. The unique insights that force spectroscopy has gained to complement knowledge learned through population averaging techniques in interrogating biomolecular details prove to be instrumental in therapeutic innovations such as those in structure-based drug design

    A role for heparan sulfate proteoglycans in Plasmodium falciparum sporozoite invasion of anopheline mosquito salivary glands

    Get PDF
    HS (heparan sulfate) has been shown to be an important mediator of Plasmodium sporozoite homing and invasion of the liver, but the role of this glycosaminoglycan in mosquito vector host–sporozoite interactions is unknown. We have biochemically characterized the function of AgOXT1 (Anopheles gambiae peptide-O-xylosyltransferase 1) and confirmed that AgOXT1 can modify peptides representing model HS and chondroitin sulfate proteoglycans in vitro. Moreover, we also demonstrated that the mosquito salivary gland basal lamina proteoglycans are modified by HS. We used RNA interference-mediated knockdown of HS biosynthesis in A. gambiae salivary glands to determine whether Plasmodium falciparum sporozoites that are released from mosquito midgut oocysts use salivary gland HS as a receptor for tissue invasion. Our results suggest that salivary gland basal lamina HS glycosaminoglycans only partially mediate midgut sporozoite invasion of this tissue, and that in the absence of HS, the presence of other surface co-receptors is sufficient to facilitate parasite entry

    Comprehensive analysis of temporal alterations in cellular proteome of bacillus subtilis under curcumin treatment

    Get PDF
    Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division

    The Puf-Family RNA-Binding Protein Puf2 Controls Sporozoite Conversion to Liver Stages in the Malaria Parasite

    Get PDF
    Malaria is a vector-borne infectious disease caused by unicellular, obligate intracellular parasites of the genus Plasmodium. During host switch the malaria parasite employs specialized latent stages that colonize the new host environment. Previous work has established that gametocytes, sexually differentiated stages that are taken up by the mosquito vector, control expression of genes required for mosquito colonization by translational repression. Sexual parasite development is controlled by a DEAD-box RNA helicase of the DDX6 family, termed DOZI. Latency of sporozoites, the transmission stage injected during an infectious blood meal, is controlled by the eIF2alpha kinase IK2, a general inhibitor of protein synthesis. Whether RNA-binding proteins participate in translational regulation in sporozoites remains to be studied. Here, we investigated the roles of two RNA-binding proteins of the Puf-family, Plasmodium Puf1 and Puf2, during sporozoite stage conversion. Our data reveal that, in the rodent malaria parasite P. berghei, Puf2 participates in the regulation of IK2 and inhibits premature sporozoite transformation. Inside mosquito salivary glands puf2(-) sporozoites transform over time to round forms resembling early intra-hepatic stages. As a result, mutant parasites display strong defects in initiating a malaria infection. In contrast, Puf1 is dispensable in vivo throughout the entire Plasmodium life cycle. Our findings support the notion of a central role for Puf2 in parasite latency during switch between the insect and mammalian hosts

    Authenticity and drug resistance in a panel of acute lymphoblastic leukaemia cell lines

    Get PDF
    Cell lines are important models for drug resistance in acute lymphoblastic leukaemia (ALL), but are often criticised as being unrepresentative of primary disease. There are also doubts regarding the authenticity of many lines. We have characterised a panel of ALL cell lines for growth and drug resistance and compared data with that published for primary patient specimens. In contrast to the convention that cell lines are highly proliferative, those established in our laboratory grow at rates similar to estimates of leukaemic cells in vivo (doubling time 53–442 h). Authenticity was confirmed by genetic fingerprinting, which also demonstrated the potential stability of long-term cultures. In vitro glucocorticoid resistance correlated well with that measured ex vivo, but all lines were significantly more sensitive to vincristine than primary specimens. Sensitivity to methotrexate was inversely correlated to that of glucocorticoids and L-asparaginase, indicating possible reciprocity in resistance mechanisms. A cell line identified as highly methotrexate resistant (IC50 >8000-fold higher than other lines) was derived from a patient receiving escalating doses of the drug, indicating in vivo selection of resistance as a cause of relapse. Many of these lines are suitable as models to study naturally occurring resistance phenotypes in paediatric ALL
    corecore