12,498 research outputs found
Matrix models on the fuzzy sphere
Field theory on a fuzzy noncommutative sphere can be considered as a
particular matrix approximation of field theory on the standard commutative
sphere. We investigate from this point of view the scalar theory. We
demonstrate that the UV/IR mixing problems of this theory are localized to the
tadpole diagrams and can be removed by an appropiate (fuzzy) normal ordering of
the vertex. The perturbative expansion of this theory reduces in the
commutative limit to that on the commutative sphere.Comment: 6 pages, LaTeX2e, Talk given at the NATO Advanced Research Workshop
on Confiment, Topology, and other Non-Perturbative Aspects of QCD, Stara
Lesna, Slovakia, Jan. 21-27, 200
Functional Renormalization of Noncommutative Scalar Field Theory
In this paper we apply the Functional Renormalization Group Equation (FRGE)
to the non-commutative scalar field theory proposed by Grosse and Wulkenhaar.
We derive the flow equation in the matrix representation and discuss the theory
space for the self-dual model. The features introduced by the external
dimensionful scale provided by the non-commutativity parameter, originally
pointed out in \cite{Gurau:2009ni}, are discussed in the FRGE context. Using a
technical assumption, but without resorting to any truncation, it is then shown
that the theory is asymptotically safe for suitably small values of the
coupling, recovering the result of \cite{disertori:2007}. Finally, we
show how the FRGE can be easily used to compute the one loop beta-functions of
the duality covariant model.Comment: 38 pages, no figures, LaTe
Noncommutative QFT and Renormalization
Field theories on deformed spaces suffer from the IR/UV mixing and
renormalization is generically spoiled. In work with R. Wulkenhaar, one of us
realized a way to cure this disease by adding one more marginal operator. We
review these ideas, show the application to models and use the heat
kernel expansion methods for a scalar field theory coupled to an external gauge
field on a -deformed space and derive noncommutative gauge field
actions.Comment: To appear in the proceedings of the Workshop "Noncommutative Geometry
in Field and String Theory", Corfu, 2005 (Greece
Noncommutative Chiral Anomaly and the Dirac-Ginsparg-Wilson Operator
It is shown that the local axial anomaly in dimensions emerges naturally
if one postulates an underlying noncommutative fuzzy structure of spacetime .
In particular the Dirac-Ginsparg-Wilson relation on is shown to
contain an edge effect which corresponds precisely to the ``fuzzy''
axial anomaly on the fuzzy sphere . We also derive a novel gauge-covariant
expansion of the quark propagator in the form where
is the lattice spacing on , is
the covariant noncommutative chirality and is an effective
Dirac operator which has essentially the same IR spectrum as
but differes from it on the UV modes. Most remarkably is the fact that both
operators share the same limit and thus the above covariant expansion is not
available in the continuum theory . The first bit in this expansion
although it vanishes as it stands in the continuum
limit, its contribution to the anomaly is exactly the canonical theta term. The
contribution of the propagator is on the other hand
equal to the toplogical Chern-Simons action which in two dimensions vanishes
identically .Comment: 26 pages, latex fil
Generalized local interactions in 1D: solutions of quantum many-body systems describing distinguishable particles
As is well-known, there exists a four parameter family of local interactions
in 1D. We interpret these parameters as coupling constants of delta-type
interactions which include different kinds of momentum dependent terms, and we
determine all cases leading to many-body systems of distinguishable particles
which are exactly solvable by the coordinate Bethe Ansatz. We find two such
families of systems, one with two independent coupling constants deforming the
well-known delta interaction model to non-identical particles, and the other
with a particular one-parameter combination of the delta- and (so-called)
delta-prime interaction. We also find that the model of non-identical particles
gives rise to a somewhat unusual solution of the Yang-Baxter relations. For the
other model we write down explicit formulas for all eigenfunctions.Comment: 23 pages v2: references adde
Absence of a fuzzy phase in the dimensionally reduced 5d Yang-Mills-Chern-Simons model
We perform nonperturbative studies of the dimensionally reduced 5d
Yang-Mills-Chern-Simons model, in which a four-dimensional fuzzy manifold,
``fuzzy S'', is known to exist as a classical solution. Although the
action is unbounded from below, Monte Carlo simulations provide an evidence for
a well-defined vacuum, which stabilizes at large , when the coefficient of
the Chern-Simons term is sufficiently small. The fuzzy S prepared as an
initial configuration decays rapidly into this vacuum in the process of
thermalization. Thus we find that the model does not possess a ``fuzzy S
phase'' in contrast to our previous results on the fuzzy S.Comment: 11 pages, 2 figures, (v2) typos correcte
Noncommutative Induced Gauge Theories on Moyal Spaces
Noncommutative field theories on Moyal spaces can be conveniently handled
within a framework of noncommutative geometry. Several renormalisable matter
field theories that are now identified are briefly reviewed. The construction
of renormalisable gauge theories on these noncommutative Moyal spaces, which
remains so far a challenging problem, is then closely examined. The computation
in 4-D of the one-loop effective gauge theory generated from the integration
over a scalar field appearing in a renormalisable theory minimally coupled to
an external gauge potential is presented. The gauge invariant effective action
is found to involve, beyond the expected noncommutative version of the pure
Yang-Mills action, additional terms that may be interpreted as the gauge theory
counterpart of the harmonic term, which for the noncommutative -theory
on Moyal space ensures renormalisability. A class of possible candidates for
renormalisable gauge theory actions defined on Moyal space is presented and
discussed.Comment: 24 pages, 6 figures. Talk given at the "International Conference on
Noncommutative Geometry and Physics", April 2007, Orsay (France). References
updated. To appear in J. Phys. Conf. Se
On the Effective Action of Noncommutative Yang-Mills Theory
We compute here the Yang-Mills effective action on Moyal space by integrating
over the scalar fields in a noncommutative scalar field theory with harmonic
term, minimally coupled to an external gauge potential. We also explain the
special regularisation scheme chosen here and give some links to the Schwinger
parametric representation. Finally, we discuss the results obtained: a
noncommutative possibly renormalisable Yang-Mills theory.Comment: 19 pages, 6 figures. At the occasion of the "International Conference
on Noncommutative Geometry and Physics", April 2007, Orsay (France). To
appear in J. Phys. Conf. Se
The One-loop UV Divergent Structure of U(1) Yang-Mills Theory on Noncommutative R^4
We show that U(1) Yang-Mills theory on noncommutative R^4 can be renormalized
at the one-loop level by multiplicative dimensional renormalization of the
coupling constant and fields of the theory. We compute the beta function of the
theory and conclude that the theory is asymptotically free. We also show that
the Weyl-Moyal matrix defining the deformed product over the space of functions
on R^4 is not renormalized at the one-loop level.Comment: 8 pages. A missing complex "i" is included in the field strength and
the divergent contributions corrected accordingly. As a result the model
turns out to be asymptotically fre
- …
