815 research outputs found
Immunodepletion and hypoxia preconditioning of mouse vompact bone cells as a novel protocol to isolate highly immunosuppressive mesenchymal stem cells
Prepublished on Liebert Instant Online December 21, 2016Compact bones (CB) are major reservoirs of mouse mesenchymal stem cells (mMSC). Here, we established a protocol to isolate MSC from CB and tested their immunosuppressive potential. Collagenase type II digestion of BM-flushed CB from C57B/6 mice was performed to liberate mMSC precursors from bone surfaces to establish nondepleted mMSC. CB cells were also immunodepleted based on the expression of CD45 (leukocytes) and TER119 (erythroid cells) to eliminate hematopoietic cells. CD45-TER119- CB cells were subsequently used to generate depleted mMSC. CB nondepleted and depleted mMSC progenitors were cultured under hypoxic conditions to establish primary mMSC cultures. CB depleted mMSC compared to nondepleted mMSC showed greater cell numbers at subculturing and had increased functional ability to differentiate into adipocytes and osteoblasts. CB depleted mMSC had high purity and expressed key mMSC markers (>85% Sca-1, CD29, CD90) with no mature hematopoietic contaminating cells (<5% CD45, CD11b) when subcultured to passage 5 (P5). Nondepleted mMSC cultures, however, were less pure and heterogenous with <72% Sca-1+, CD29+, and CD90+ cells at early passages (P1 or P2), along with high percentages of contaminating CD11b+ (35.6%) and CD45+ (39.2%) cells that persisted in culture long term. Depleted and nondepleted mMSC nevertheless exhibited similar potency to suppress total (CD3+), CD4+ and CD8+ T cell proliferation, in a dendritic cell allostimulatory one-way mixed lymphocyte reaction. CB depleted mMSC, pretreated with proinflammatory cytokines IFN-γ, TNF-α, and IL-17A, showed superior suppression of CD8+ T cell, but not CD4+ T cell proliferation, relative to untreated-mMSC. In conclusion, CB depleted mMSC established under hypoxic conditions and treated with selective cytokines represent a novel source of potent immunosuppressive MSC. As these cells have enhanced immune modulatory function, they may represent a superior product for use in clinical allotransplantation.Kisha Nandini Sivanathan, Stan Gronthos, Shane T. Grey, Darling Rojas-Canales, and Patrick T. Coate
Cellular therapy for cardiovascular disease Part 2 - Delivery of cells and clinical experience
Peter J Psaltis, Stan Gronthos, Stephen G Worthley and Andrew C.W. Zannettin
Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow
Previous studies have provided evidence for the existence of adult human bone marrow stromal stem cells (BMSSCs) or mesenchymal stem cells. Using a combination of cell separation techniques, we have isolated an almost homogeneous population of BMSSCs from adult human bone marrow. Lacking phenotypic characteristics of leukocytes and mature stromal elements, BMSSCs are non-cycling and constitutively express telomerase activity in vivo. This mesenchymal stem cell population demonstrates extensive proliferation and retains the capacity for differentiation into bone, cartilage and adipose tissue in vitro. In addition, clonal analysis demonstrated that individual BMSSC colonies exhibit a differential capacity to form new bone in vivo. These data are consistent with the existence of a second population of bone marrow stem cells in addition to those for the hematopoietic system. Our novel selection protocol provides a means to generate purified populations of BMSSCs for use in a range of different tissue engineering and gene therapy strategies.Stan Gronthos, Andrew C. W. Zannettino, Shelley J. Hay, Songtao Shi, Stephen E. Graves, Angela Kortesidis and Paul J. Simmon
Transcriptome profiling of IL-17A preactivated mesenchymal stem cells: a comparative study to unmodified and IFN-gamma modified mesenchymal stem cells
Published 15 February 2017Human mesenchymal stem cells pretreatment with IL-17A (MSC-17) potently enhances T cell immunosuppression but not their immunogenicity, in addition to avidly promoting the induction of suppressive regulatory T cells. The aim of this study was to identify potential mechanisms by which human MSC-17 mediate their superior immunomodulatory function. Untreated-MSC (UT-MSC), IFN-γ treated MSC (MSC-γ), and MSC-17 were assessed for their gene expression profile by microarray. Significantly regulated genes were identified for their biological functions (Database for Annotation, Visualisation and Integrated Discovery, DAVID). Microarray analyses identified 1278 differentially regulated genes between MSC-γ and UT-MSC and 67 genes between MSC-17 and UT-MSC. MSC-γ were enriched for genes involved in immune response, antigen processing and presentation, humoral response, and complement activation, consistent with increased MSC-γ immunogenicity. MSC-17 genes were associated with chemotaxis response, which may be involved in T cell recruitment for MSC-17 immunosuppression. MMP1, MMP13, and CXCL6 were highly and specifically expressed in MSC-17, which was further validated by real-time PCR. Thus, MMPs and chemokines may play a key role in mediating MSC-17 superior immunomodulatory function. MSC-17 represent a potential cellular therapy to suppress immunological T cell responses mediated by expression of an array of immunoregulatory molecules.Kisha Nandini Sivanathan, Darling Rojas-Canales, Shane T. Grey, Stan Gronthos, and Patrick T. Coate
Immunomodulatory properties of induced pluripotent stem cell-derived mesenchymal cells
Abstract not availableJia Ng, Kim Hynes, Gregory White, Kisha Nandini Sivanathan, Kate Vandyke, Peter Mark Bartold and Stan Grontho
Distinct stem cells subpopulations isolated from human adipose tissue exhibit different chondrogenic and osteogenic differentiation potential
Recently adipose tissue has become a research topic also for the searching for an alternative stem cells source to use in cell based therapies such as tissue engineer.
In fact Adipose Stem Cells (ASCs) exhibit an important
differentiation potential for several cell lineages such as chondrogenic, osteogenic, myogenic, adipogenic and endothelial
cells. ASCs populations isolated using standard methodologies (i.e., based on their adherence ability) are very heterogeneous but very few studies have analysed this
aspect. Consequently, several questions are still pending, as for example, on what regard the existence/ or not of distinct ASCs subpopulations. The present study is originally aimed at isolating selected ASCs subpopulations, and to analyse their behaviour towards the heterogeneous population regarding the expression of stem cell markers and also regarding their osteogenic and chondrogenic differentiation potential. Human Adipose derived Stem Cells (hASCs)
subpopulations were isolated using immunomagnetic beads coated with several different antibodies (CD29, CD44, CD49d, CD73, CD90, CD 105, Stro-1 and p75) and were characterized by Real Time RT-PCR in order to assess the expression of mesenchymal stem cells markers (CD44,
CD73, Stro-1, CD105 and CD90) as well as known markers of the chondrogenic (Sox 9, Collagen II) and osteogenic lineage (Osteopontin, Osteocalcin). The
obtained results underline the complexity of the ASCs population demonstrating that it is composed of several subpopulations, which express different levels of ASCs markers and exhibit distinctive differentiation potentials.
Furthermore, the results obtained clearly evidence of the advantages of using selected populations in cell-based therapies, such as bone and cartilage regenerative medicine
approaches.EU funded Marie Curie Actions Alea Jacta Est
for a PhD fellowship. This work was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283)
Epigenetic regulators of mesenchymal stem/stromal cell lineage determination
Published online: 13 August 2020PURPOSE OF REVIEW:Although many signalling pathways have been discovered to be essential in mesenchymal stem/stromal (MSC) differentiation, it has become increasingly clear in recent years that epigenetic regulation of gene transcription is a vital component of lineage determination, encompassing diet, lifestyle and parental influences on bone, fat and cartilage development. RECENT FINDINGS:This review discusses how specific enzymes that modify histone methylation and acetylation or DNA methylation orchestrate the differentiation programs in lineage determination of MSC and the epigenetic changes that facilitate development of bone related diseases such as osteoporosis. The review also describes how environmental factors such as mechanical loading influence the epigenetic signatures of MSC, and how the use of chemical agents or small peptides can regulate epigenetic drift in MSC populations during ageing and disease. Epigenetic regulation of MSC lineage commitment is controlled through changes in enzyme activity, which modifies DNA and histone residues leading to alterations in chromatin structure. The co-ordinated epigenetic regulation of transcriptional activation and repression act to mediate skeletal tissue homeostasis, where deregulation of this process can lead to bone loss during ageing or osteoporosis.Dimitrios Cakouros and Stan Grontho
Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue
There has been an escalation in reports over the last decade examining the efficacy of bone marrow derived mesenchymal stem/stromal cells (BMSC) in bone tissue engineering and regenerative medicine-based applications. The multipotent differentiation potential, myelosupportive capacity, anti-inflammatory and immune-modulatory properties of BMSC underpins their versatile nature as therapeutic agents. This review addresses the current limitations and challenges of exogenous autologous and allogeneic BMSC based regenerative skeletal therapies in combination with bioactive molecules, cellular derivatives, genetic manipulation, biocompatible hydrogels, solid and composite scaffolds. The review highlights the current approaches and recent developments in utilizing endogenous BMSC activation or exogenous BMSC for the repair of long bone and vertebrae fractures due to osteoporosis or trauma. Current advances employing BMSC based therapies for bone regeneration of craniofacial defects is also discussed. Moreover, this review discusses the latest developments utilizing BMSC therapies in the preclinical and clinical settings, including the treatment of bone related diseases such as Osteogenesis Imperfecta.Agnieszka Arthur and Stan Grontho
Specific functions of TET1 and TET2 in regulating mesenchymal cell lineage determination
BACKGROUND:The 5 hydroxymethylation (5hmC) mark and TET DNA dioxygenases play a pivotal role in embryonic stem cell differentiation and animal development. However, very little is known about TET enzymes in lineage determination of human bone marrow-derived mesenchymal stem/stromal cells (BMSC). We examined the function of all three TET DNA dioxygenases, responsible for DNA hydroxymethylation, in human BMSC cell osteogenic and adipogenic differentiation. RESULTS:We used siRNA knockdown and retroviral mediated enforced expression of TET molecules and discovered TET1 to be a repressor of both osteogenesis and adipogenesis. TET1 was found to recruit the co-repressor proteins, SIN3A and the histone lysine methyltransferase, EZH2 to osteogenic genes. Conversely, TET2 was found to be a promoter of both osteogenesis and adipogenesis. The data showed that TET2 was directly responsible for 5hmC levels on osteogenic and adipogenic lineage-associated genes, whereas TET1 also played a role in this process. Interestingly, TET3 showed no functional effect in BMSC osteo-/adipogenic differentiation. Finally, in a mouse model of ovariectomy-induced osteoporosis, the numbers of clonogenic BMSC were dramatically diminished corresponding to lower trabecular bone volume and reduced levels of TET1, TET2 and 5hmC. CONCLUSION:The present study has discovered an epigenetic mechanism mediated through changes in DNA hydroxymethylation status regulating the activation of key genes involved in the lineage determination of skeletal stem cells, which may have implications in BMSC function during normal bone regulation. Targeting TET molecules or their downstream targets may offer new therapeutic strategies to help prevent bone loss and repair following trauma or disease.Dimitrios Cakouros, Sarah Hemming, Kahlia Gronthos, Renjing Liu, Andrew Zannettino, Songtao Shi and Stan Grontho
- …
