138 research outputs found
Imaging Localized States in Graphene Nanostructures
Probing techniques with spatial resolution have the potential to lead to a
better understanding of the microscopic physical processes and to novel routes
for manipulating nanostructures. We present scanning-gate images of a graphene
quantum dot which is coupled to source and drain via two constrictions. We
image and locate conductance resonances of the quantum dot in the
Coulomb-blockade regime as well as resonances of localized states in the
constrictions in real space.Comment: 18 pages, 7 figure
High-frequency gate manipulation of a bilayer graphene quantum dot
We report transport data obtained for a double-gated bilayer graphene quantum
dot. In Coulomb blockade measurements, the gate dielectric Cytop(TM) is found
to provide remarkable electronic stability even at cryogenic temperatures.
Moreover, we demonstrate gate manipulation with square shaped voltage pulses at
frequencies up to 100 MHz and show that the signal amplitude is not affected by
the presence of the capacitively coupled back gate
Raman spectroscopy on etched graphene nanoribbons
We investigate etched single-layer graphene nanoribbons with different widths
ranging from 30 to 130 nm by confocal Raman spectroscopy. We show that the
D-line intensity only depends on the edge-region of the nanoribbon and that
consequently the fabrication process does not introduce bulk defects. In
contrast, the G- and the 2D-lines scale linearly with the irradiated area and
therefore with the width of the ribbons. We further give indications that the
D- to G-line ratio can be used to gain information about the crystallographic
orientation of the underlying graphene. Finally, we perform polarization angle
dependent measurements to analyze the nanoribbon edge-regions
Transition to Landau Levels in Graphene Quantum Dots
We investigate the electronic eigenstates of graphene quantum dots of
realistic size (i.e., up to 80 nm diameter) in the presence of a perpendicular
magnetic field B. Numerical tight-binding calculations and Coulomb-blockade
measurements performed near the Dirac point exhibit the transition from the
linear density of states at B=0 to the Landau level regime at high fields.
Details of this transition sensitively depend on the underlying graphene
lattice structure, bulk defects, and localization effects at the edges. Key to
the understanding of the parametric evolution of the levels is the strength of
the chiral-symmetry breaking K-K' scattering. We show that the parametric
variation of the level variance provides a quantitative measure for this
scattering mechanism. We perform measurements of the parametric motion of
Coulomb blockade peaks as a function of magnetic field and find good agreement.
We thereby demonstrate that the magnetic-field dependence of graphene energy
levels may serve as a sensitive indicator for the properties of graphene
quantum dots and, in further consequence, for the validity of the
Dirac-picture.Comment: 10 pages, 11 figures, higher quality images available on reques
Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field
We present transport measurements on a strongly coupled graphene quantum dot
in a perpendicular magnetic field. The device consists of an etched
single-layer graphene flake with two narrow constrictions separating a 140 nm
diameter island from source and drain graphene contacts. Lateral graphene gates
are used to electrostatically tune the device. Measurements of Coulomb
resonances, including constriction resonances and Coulomb diamonds prove the
functionality of the graphene quantum dot with a charging energy of around 4.5
meV. We show the evolution of Coulomb resonances as a function of perpendicular
magnetic field, which provides indications of the formation of the graphene
specific 0th Landau level. Finally, we demonstrate that the complex pattern
superimposing the quantum dot energy spectra is due to the formation of
additional localized states with increasing magnetic field.Comment: 6 pages, 4 figure
Transport through graphene double dots
We present Coulomb blockade measurements in a graphene double dot system. The
coupling of the dots to the leads and between the dots can be tuned by graphene
in-plane gates. The coupling is a non-monotonic function of the gate voltage.
Using a purely capacitive model, we extract all relevant energy scales of the
double dot system
Fast detection of single-charge tunneling to a graphene quantum dot in a multi-level regime
In situ tunable radio-frequency charge detection is used for the
determination of the tunneling rates into and out of a graphene single quantum
dot connected to only one lead. An analytical model for calculating these rates
in the multi-level tunneling regime is presented and found to correspond very
well to our experimental observations.Comment: 4 pages, 3 figure
Observation of excited states in a graphene quantum dot
We demonstrate that excited states in single-layer graphene quantum dots can
be detected via direct transport experiments. Coulomb diamond measurements show
distinct features of sequential tunneling through an excited state. Moreover,
the onset of inelastic cotunneling in the diamond region could be detected. For
low magnetic fields, the positions of the single-particle energy levels
fluctuate on the scale of a flux quantum penetrating the dot area. For higher
magnetic fields, the transition to the formation of Landau levels is observed.
Estimates based on the linear energy-momentum relation of graphene give carrier
numbers of the order of 10 for our device.Comment: 3 pages, 3 figure
Coherent Electron-Phonon Coupling in Tailored Quantum Systems
The coupling between a two-level system and its environment leads to
decoherence. Within the context of coherent manipulation of electronic or
quasiparticle states in nanostructures, it is crucial to understand the sources
of decoherence. Here, we study the effect of electron-phonon coupling in a
graphene and an InAs nanowire double quantum dot. Our measurements reveal
oscillations of the double quantum dot current periodic in energy detuning
between the two levels. These periodic peaks are more pronounced in the
nanowire than in graphene, and disappear when the temperature is increased. We
attribute the oscillations to an interference effect between two alternative
inelastic decay paths involving acoustic phonons present in these materials.
This interpretation predicts the oscillations to wash out when temperature is
increased, as observed experimentally.Comment: 11 pages, 4 figure
- …