16 research outputs found

    Breast cancer prognostic classification in the molecular era: the role of histological grade

    Get PDF
    Breast cancer is a heterogeneous disease with varied morphological appearances, molecular features, behavior, and response to therapy. Current routine clinical management of breast cancer relies on the availability of robust clinical and pathological prognostic and predictive factors to support clinical and patient decision making in which potentially suitable treatment options are increasingly available. One of the best-established prognostic factors in breast cancer is histological grade, which represents the morphological assessment of tumor biological characteristics and has been shown to be able to generate important information related to the clinical behavior of breast cancers. Genome-wide microarray-based expression profiling studies have unraveled several characteristics of breast cancer biology and have provided further evidence that the biological features captured by histological grade are important in determining tumor behavior. Also, expression profiling studies have generated clinically useful data that have significantly improved our understanding of the biology of breast cancer, and these studies are undergoing evaluation as improved prognostic and predictive tools in clinical practice. Clinical acceptance of these molecular assays will require them to be more than expensive surrogates of established traditional factors such as histological grade. It is essential that they provide additional prognostic or predictive information above and beyond that offered by current parameters. Here, we present an analysis of the validity of histological grade as a prognostic factor and a consensus view on the significance of histological grade and its role in breast cancer classification and staging systems in this era of emerging clinical use of molecular classifiers. © 2010 BioMed Central Lt

    Ontology-driven Image Analysis for Histopathological Images

    Get PDF
    International audienceOntology-based software and image processing engine must cooperate in new fields of computer vision like microscopy acquisition wherein the amount of data, concepts and processing to be handled must be properly controlled. Within our own platform, we need to extract biological objects of interest in huge size and high-content microscopy images. In addition to specific low-level image analysis procedures, we used knowledge formalization tools and high-level reasoning ability of ontology-based software. This methodology made it possible to improve the expressiveness of the clinical models, the usability of the platform for the pathologist and the sensitivity or sensibility of the low-level image analysis algorithms

    Ontology-Enhanced Vision System for New Microscopy Imaging Challenges

    No full text
    corecore