3,741 research outputs found

    The impacts of tourism on two communities adjacent to the Kruger National Park, South Africa

    Get PDF
    This paper explores the socioeconomic impacts of tourism associated with the Kruger National Park, South Africa's flagship national park, on the neighbouring villages of Cork and Belfast. Case study research, where the study area was characterised as a social-ecological system, was used to investigate the impacts of Park tourism on these communities. The findings offer a micro-scale, local community perspective of these impacts and indicate that the enclave nature of Park tourism keeps local communities separate from the Park and makes it hard for them to benefit from it. The paper concludes with reflections on this perceived separation, and suggests the need to make the Park boundaries more 'permeable' so as to improve relationships with adjacent communities, while also pragmatically managing community expectation

    The influence of initial mass segregation on the runaway merging of stars

    Get PDF
    We have investigated the effect of initial mass segregation on the runaway merging of stars. The evolution of multi-mass, dense star clusters was followed by means of direct N-body simulations of up to 131.072 stars. All clusters started from King models with dimensionless central potentials of 3.0 <= W_0 <= 9.0. Initial mass segregation was realized by varying the minimum mass of a certain fraction of stars whose either (1) distances were closest to the cluster center or (2) total energies were lowest. The second case is more favorable to promote the runaway merging of stars by creating a high-mass core of massive, low-energy stars. Initial mass segregation could decrease the central relaxation time and thus help the formation of a high-mass core. However, we found that initial mass segregation does not help the runaway stellar merger to happen if the overall mass density profile is kept constant. This is due to the fact that the collision rate of stars is not increased due to initial mass segregation. Our simulations show that initial mass segregation is not sufficient to allow runaway merging of stars to occur in clusters with central densities typical for star clusters in the Milky Way.Comment: 25 pages, 9 figures, 3 tables, accepted for publication in Ap

    Role of Single Defects in Electronic Transport through Carbon Nanotube Field-Effect Transistors

    Full text link
    The influence of defects on electron transport in single-wall carbon nanotube field effect transistors (CNFETs) is probed by combined scanning gate microscopy (SGM) and scanning impedance microscopy (SIM). SGM reveals a localized field effect at discrete defects along the CNFET length. The depletion surface potential of individual defects is quantified from the SGM-imaged radius of the defect as a function of tip bias voltage. This provides a measure of the Fermi level at the defect with zero tip voltage, which is as small as 20 meV for the strongest defects. The effect of defects on transport is probed by SIM as a function of backgate and tip-gate voltage. When the backgate voltage is set so the CNFET is "on" (conducting), SIM reveals a uniform potential drop along its length, consistent with diffusive transport. In contrast, when the CNFET is "off", potential steps develop at the position of depleted defects. Finally, high-resolution imaging of a second set of weak defects is achieved in a new "tip-gated" SIM mode.Comment: to appear in Physical Review Letter

    Improved approximate inspirals of test-bodies into Kerr black holes

    Full text link
    We present an improved version of the approximate scheme for generating inspirals of test-bodies into a Kerr black hole recently developed by Glampedakis, Hughes and Kennefick. Their original "hybrid" scheme was based on combining exact relativistic expressions for the evolution of the orbital elements (the semi-latus rectum p and eccentricity e) with approximate, weak-field, formula for the energy and angular momentum fluxes, amended by the assumption of constant inclination angle, iota, during the inspiral. Despite the fact that the resulting inspirals were overall well-behaved, certain pathologies remained for orbits in the strong field regime and for orbits which are nearly circular and/or nearly polar. In this paper we eliminate these problems by incorporating an array of improvements in the approximate fluxes. Firstly, we add certain corrections which ensure the correct behaviour of the fluxes in the limit of vanishing eccentricity and/or 90 degrees inclination. Secondly, we use higher order post-Newtonian formulae, adapted for generic orbits. Thirdly, we drop the assumption of constant inclination. Instead, we first evolve the Carter constant by means of an approximate post-Newtonian expression and subsequently extract the evolution of iota. Finally, we improve the evolution of circular orbits by using fits to the angular momentum and inclination evolution determined by Teukolsky based calculations. As an application of the improved scheme we provide a sample of generic Kerr inspirals and for the specific case of nearly circular orbits we locate the critical radius where orbits begin to decircularise under radiation reaction. These easy-to-generate inspirals should become a useful tool for exploring LISA data analysis issues and may ultimately play a role in source detection.Comment: 25 pages, 14 figures, some typos corrected, short section on conservative corrections added, minor changes for consistency with published versio

    Scale and conservation planning in the real world

    Get PDF
    Conservation planning is carried out on a variety of geopolitical and biogeographical scales. Whereas considerable consensus is emerging about the most appropriate procedures for identifying conservation areas, the spatial implications of conducting conservation planning at divergent scales have received little attention. Here we explore the consequences of planning at different geopolitical scales, using a database of the mammalian fauna from the Northern Provinces of South Africa. The conservation network resulting from treating the region as one unit is compared with networks generated separately for the provinces nested in that region. These outcomes are evaluated in terms of (i) their land use efficiencies, (ii) their spatial overlap, and (iii) the impact of algorithm attributes. Although land use efficiencies are greater on broader scales, on average the spatial congruence between the broad-scale regional network and fine-scale provincial networks was less than 14%. Algorithms using different selection rules fail to improve this disturbing outcome. Consequently, scale has an overwhelming influence on areas identified as conservation networks in geopolitical units. This should be recognized in conservation planning

    Gravitational waves from stars orbiting the Sagittarius A* black hole

    Full text link
    One of the main astrophysical processes leading to strong emission of gravitational waves to be detected by the future space-borne interferometer LISA is the capture of a compact star by a black hole with a mass of a few million solar masses in the center of a galaxy. In previous studies, main sequence stars were thought not to contribute because they suffer from early tidal disruption. Here we show that, according to our simulations of the stellar dynamics of the Sgr A* cluster, there must be one to a few low-mass main sequence stars sufficiently bound to the central Galactic black hole to be conspicuous sources in LISA observations. The probability that a white dwarf may be detectable is lower than 0.5 and, in spite of mass segregation, detection of a captured neutron star or stellar black hole in the center of the Milky Way is highly unlikely.Comment: 5 pages, 3 figures, accepted for publication in ApJL, new version shortened to fit in 4 journal pages. Slightly longer version available at http://obswww.unige.ch/~freitag/papers/article_SgrA_long.ps.g

    On the Applicability of OGSA-BES to D-Grid Community Scheduling Systems

    No full text
    In this paper, we exemplary review the requirements of two Grid communities in the D-Grid project and identify similarities in the addressed scientific applications respectively. To facilitate Grid scheduler interoperability on the underlying heterogeneous middleware systems we extend the standardized OGSA-BES interface and propose a basic concept for the exploitation of collaboration potential in the D-Grid community in general. Compared with existing meta-scheduling architectures there will be no need for a central scheduler instance

    Carrier scattering, mobilities and electrostatic potential in mono-, bi- and tri-layer graphenes

    Full text link
    The carrier density and temperature dependence of the Hall mobility in mono-, bi- and tri-layer graphene has been systematically studied. We found that as the carrier density increases, the mobility decreases for mono-layer graphene, while it increases for bi-layer/tri-layer graphene. This can be explained by the different density of states in mono-layer and bi-layer/tri-layer graphenes. In mono-layer, the mobility also decreases with increasing temperature primarily due to surface polar substrate phonon scattering. In bi-layer/tri-layer graphene, on the other hand, the mobility increases with temperature because the field of the substrate surface phonons is effectively screened by the additional graphene layer(s) and the mobility is dominated by Coulomb scattering. We also find that the temperature dependence of the Hall coefficient in mono-, bi- and tri-layer graphene can be explained by the formation of electron and hole puddles in graphene. This model also explains the temperature dependence of the minimum conductance of mono-, bi- and tri-layer graphene. The electrostatic potential variations across the different graphene samples are extracted.Comment: 18 pages, 7 figure

    Monitoring cortical excitability during repetitive transcranial magnetic stimulation in children with ADHD: a single-blind, sham-controlled TMS-EEG study

    Get PDF
    Background: Repetitive transcranial magnetic stimulation (rTMS) allows non-invasive stimulation of the human brain. However, no suitable marker has yet been established to monitor the immediate rTMS effects on cortical areas in children. Objective: TMS-evoked EEG potentials (TEPs) could present a well-suited marker for real-time monitoring. Monitoring is particularly important in children where only few data about rTMS effects and safety are currently available. Methods: In a single-blind sham-controlled study, twenty-five school-aged children with ADHD received subthreshold 1 Hz-rTMS to the primary motor cortex. The TMS-evoked N100 was measured by 64-channel-EEG pre, during and post rTMS, and compared to sham stimulation as an intraindividual control condition. Results: TMS-evoked N100 amplitude decreased during 1 Hz-rTMS and, at the group level, reached a stable plateau after approximately 500 pulses. N100 amplitude to supra-threshold single pulses post rTMS confirmed the amplitude reduction in comparison to the pre-rTMS level while sham stimulation had no influence. EEG source analysis indicated that the TMS-evoked N100 change reflected rTMS effects in the stimulated motor cortex. Amplitude changes in TMS-evoked N100 and MEPs (pre versus post 1 Hz-rTMS) correlated significantly, but this correlation was also found for pre versus post sham stimulation. Conclusion: The TMS-evoked N100 represents a promising candidate marker to monitor rTMS effects on cortical excitability in children with ADHD. TMS-evoked N100 can be employed to monitor real-time effects of TMS for subthreshold intensities. Though TMS-evoked N100 was a more sensitive parameter for rTMS-specific changes than MEPs in our sample, further studies are necessary to demonstrate whether clinical rTMS effects can be predicted from rTMS-induced changes in TMS-evoked N100 amplitude and to clarify the relationship between rTMS-induced changes in TMS-evoked N100 and MEP amplitudes. The TMS-evoked N100 amplitude reduction after 1 Hz-rTMS could either reflect a globally decreased cortical response to the TMS pulse or a specific decrease in inhibition

    A simple dot blot assay to measure hygromycin B phosphotransferase activity in whole cell extracts of Neurospora crassa

    Get PDF
    Hygromycin B (Hyg) is an aminocyclitol antibiotic with broad spectrum activity against prokaryotes and eukaryotes (Pettinger et al. 1953 Antibiot. Chemother. 3:1268- 1278). Hyg inhibits protein synthesis by blocking ribosomal translocation; it prevents polypeptide elongation by interfering with aminoacyl tRNA recognition and ribosomal A-site occupation (Cabanas et al. 1978 Euro. J. Biochem. 87:21-27, Hausner et al. 1988 J. Biol. Chem. 263:13103-13111). Hyg can lead to misreading during translation in vitro (Davies and Davies 1968 J. Biol. Chem. 243:3312-3316, Gonzales et al. 1978 Biochim. Biophys. Acta 521:459-469, Singh et al. 1979 Nature 277:146-148); however, this effect was not duplicated in vivo (Bakker 1992 J. Gen. Microbiol. 138:563-569)
    • …
    corecore