192 research outputs found

    A role for the asexual spores in infection of Fraxinus excelsior by the ash-dieback fungus Hymenoscyphus fraxineus

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.There is another ORE record for this article: http://hdl.handle.net/10871/33324The invasive pathogen, ash dieback fungus Hymenoscyphus fraxineus, is spreading rapidly across Europe. It shows high levels of outcrossing and limited population structure, even at the epidemic front. The anamorphic (asexual) form produces prolific conidia, thought to function solely as spermatia (male gametes), facilitating gene flow between sympatric strains. Here, we show that conidia are capable of germination on ash leaves and in vitro, and can infect seedlings via leaves or soil. In leaves, germlings form structures resembling fruiting bodies. Additionally, H. fraxineus colonises ash debris and grows in soil in the absence of ash tissues. We propose an amended life-cycle in which wind-dispersed, insectvectored or water-spread conidia infect ash and may sporulate in planta, as well as in forest debris. This amplifies inoculum levels of different strains in ash stands. In combination with their function as spermatia, conidia thus act to maximise gene flow between sympatric strains, including those originally present at low inoculum. Such mixing increases evolutionary potential, as well as enhancing the likelihood of gene introgression from closely-related strains or assimilation of further genetic diversity from parental Asian populations. This scenario increases the adaptability of H. fraxineus to new climates and, indeed, onto new host species.This work was funded by a grant from the BBSRC to the Nornex Consortium, BBS/E/J/000CA523, in association with DEFRA. We thank Dr Chris Thornton for useful discussions concerning fungal pathogens of soil and Dr Sreedhar Kilaru for kindly providing primers

    Evaluation of diffusive gradients in thin-films using a Diphonix® resin for monitoring dissolved uranium in natural waters

    Get PDF
    Commercially available Diphonix® resin (TrisKem International) was evaluated as a receiving phase for use with the diffusive gradients in thin-films (DGT) passive sampler for measuring uranium. This resin has a high partition coefficient for actinides and is used in the nuclear industry. Other resins used as receiving phases with DGT for measuring uranium have been prone to saturation and significant chemical interferences. The performance of the device was evaluated in the laboratory and in field trials. In laboratory experiments uptake of uranium (all 100% efficiency) by the resin was unaffected by varying pH (4–9), ionic strength (0.01–1.00 M, as NaNO3) and varying aqueous concentrations of Ca2+ (100–500 mg L−1) and HCO3− (100–500 mg L−1). Due to the high partition coefficient of Diphonex®, several elution techniques for uranium were evaluated. The optimal eluent mixture was 1 M NaOH/1 M H2O2, eluting 90% of the uranium from the resin. Uptake of uranium was linear (R2 = 0.99) over time (5 days) in laboratory experiments using artificial freshwater showing no saturation effects of the resin. In field deployments (River Lambourn, UK) the devices quantitatively accumulated uranium for up to 7 days. In both studies uptake of uranium matched that theoretically predicted for the DGT. Similar experiments in seawater did not follow the DGT theoretical uptake and the Diphonix® appeared to be capacity limited and also affected by matrix interferences. Isotopes of uranium (U235/U238) were measured in both environments with a precision and accuracy of 1.6–2.2% and 1.2–1.4%, respectively. This initial study shows the potential of using Diphonix®-DGT for monitoring of uranium in the aquatic environment

    The application of passive sampler (DGT) technology for improved understanding of metal behaviour at a marine disposal site

    Get PDF
    Metal behaviour and availability at a contaminated dredge material disposal site within UK waters has been investigated using Diffusive Gradient in Thin films (DGT) passive sampling technology. Three stations representing contrasting history and presence of maintenance dredge disposal, including a control station outside the disposal site, have been studied and depth profiles of fluxes of different metals (Fe, Mn, Pb, Cu, Cd, Cr, Ni, Zn) to the binding gel (Chelex 100) have been derived. Higher flux rates and shallower mobilisation of metals (Mn and Fe) to the binding gel were observed at the disposal stations compared to the control station. Here we describe metal mobilization at different depths, linking the remobilization of Fe2+ and Mn2+ to the sediment (re)supply of other heavy metals of interest with a focus on Cd, Ni and Pb and as they are on the Water Framework Directive (WFD) list of priority substances and OSPAR list of priority pollutants. Results showed that Cd, Pb and Ni exhibited signs of resupply at the sediment-water interface (SWI). There was a potential increased mobilisation and source to the water column of Pb and Ni at the disposal site stations, but there was no Cd source, despite higher total loadings. This information has the potential to improve our current understanding of metal cycles at disposal sites. This work can be used as an indication of likely metal bioavailability and also assist in determining whether the sites act as sources or sinks of heavy metals. This information could assist disposal site monitoring and dredge material licensing

    The infiltration-centrifugation technique for extraction of apoplastic fluid from plant leaves using Phaseolus vulgaris as an example

    Get PDF
    This is the final version of the article. Available from JoVE via the DOI in this record.The apoplast is a distinct extracellular compartment in plant tissues that lies outside the plasma membrane and includes the cell wall. The apoplastic compartment of plant leaves is the site of several important biological processes, including cell wall formation, cellular nutrient and water uptake and export, plant-endophyte interactions and defence responses to pathogens. The infiltration-centrifugation method is well established as a robust technique for the analysis of the soluble apoplast composition of various plant species. The fluid obtained by this method is commonly known as apoplast washing fluid (AWF). The following protocol describes an optimized vacuum infiltration and centrifugation method for AWF extraction from Phaseolus vulgaris (French bean) cv. Tendergreen leaves. The limitations of this method and the optimization of the protocol for other plant species are discussed. Recovered AWF can be used in a wide range of downstream experiments that seek to characterize the composition of the apoplast and how it varies in response to plant species and genotype, plant development and environmental conditions, or to determine how microorganisms grow in apoplast fluid and respond to changes in its composition.This work was supported by grants BB/J016012/1 and BB/E007872/1 from the UK Biotechnology and Biological Sciences Research Council (BBSRC) to Gail Preston

    Parapatric speciation of Meiothermus in serpentinite-hosted aquifers in Oman

    Get PDF
    The factors that control the distribution and evolution of microbial life in subsurface environments remain enigmatic due to challenges associated with sampling fluids from discrete depth intervals via boreholes while avoiding mixing of fluids. Here, using an inflatable packer system, fracture waters were isolated and collected from three discrete depth intervals spanning >130 m in a borehole intersecting an ultramafic rock formation undergoing serpentinization in the Samail Ophiolite, Sultanate of Oman. Near surface aquifer waters were moderately reducing and had alkaline pH while deeper aquifer waters were reduced and had hyperalkaline pH, indicating extensive influence by serpentinization. Metagenomic sequencing and analysis of DNA from filtered biomass collected from discrete depth intervals revealed an abundance of aerobes in near surface waters and a greater proportion of anaerobes at depth. Yet the abundance of the putatively obligate aerobe, Meiothermus, increased with depth, providing an opportunity to evaluate the influence of chemical and spatial variation on its distribution and speciation. Two clades of Meiothermus metagenome assembled genomes (MAGs) were identified that correspond to surface and deep populations termed Types I (S) and II (D), respectively; both clades comprised an apparently Oman-specific lineage indicating a common ancestor. Type II (D) clade MAGs encoded fewer genes and were undergoing slower genome replication as inferred from read mapping. Further, single nucleotide variants (SNVs) and mobile genetic elements identified among MAGs revealed detectable, albeit limited, evidence for gene flow/recombination between spatially segregated Type I (S) and Type II (D) populations. Together, these observations indicate that chemical variation generated by serpentinization, combined with physical barriers that reduce/limit dispersal and gene flow, allowed for the parapatric speciation of Meiothermus in the Samail Ophiolite or a geologic precursor. Further, Meiothermus genomic data suggest that deep and shallow aquifer fluids in the Samail Ophiolite may mix over shorter time scales than has been previously estimated from geochemical data

    Concurrent sampling of transitional and coastal waters by Diffusive Gradient in Thin-films (DGT) and spot sampling for trace metals analysis

    Get PDF
    This protocol was developed based on the knowledge acquired in the framework of the Interreg MONITOOL project (EAPA_565/2016) where extensive sampling campaigns were performed in transitional and coastal waters covering eight European countries. It provides detailed procedures and guidelines for the sampling of these waterbodies by concurrent collection of discrete water samples and the deployment of Diffusive Gradient in Thin-films (DGT) passive samplers for the measurement of trace metal concentrations. In order to facilitate the application of this protocol by end-users, it presents steps to follow in the laboratory prior to sampling campaigns, explains the procedures for field campaigns (including in situ measurement of supporting parameters) and subsequent sample processing in the laboratory in preparation for trace metal analyze by inductively coupled plasma-mass spectrometry (ICP-MS) and voltammetry. The protocol provides a systematic, coherent field sampling and sample preparation strategy that was developed in order to ensure comparability and reproducibility of the data obtained from each project Partner in different regions. • Standardization of the concurrent sampling of transitional and coastal waters by DGT passive samplers and spot sampling. • Robust procedures and tips based on existing international standards and comprehensive practical experience. • Links to demonstration videos produced within the MONITOOL project

    Assessing variability in the ratio of metal concentrations measured by DGT-type passive samplers and spot sampling in European seawaters

    Get PDF
    The current study evaluates the effect of seawater physico-chemical characteristics on the relationship between the concentration of metals measured by Diffusive Gradients in Thin films (DGT) passive samplers (i.e., DGT-labile concentration) and the concentrations measured in discrete water samples. Accordingly, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to measure the total dissolved metal concentrations in the discrete water samples and the labile metal concentrations obtained by DGT samplers; additionally, lead and cadmium conditional labile fractions were determined by Anodic Stripping Voltammetry (ASV) and total dissolved nickel was measured by Cathodic Stripping Voltammetry (CSV). It can be concluded that, in general, the median ratios of DGT/ICP and DGT/ASV(CSV) were lower than 1, except for Ni (median ratio close to 1) and Zn (higher than 1). This indicates the importance of speciation and time-integrated concentrations measured using passive sampling techniques, which is in line with the WFD suggestions for improving the chemical assessment of waterbodies. It is the variability in metal content in waters rather than environmental conditions to which the variability of the ratios can be attributed. The ratios were not significantly affected by the temperature, salinity, pH, oxygen, DOC or SPM, giving a great confidence for all the techniques used. Within a regulatory context such as the EU Water Framework Directive this is a great advantage, since the simplicity of not needing to use corrections to minimize the effects of environmental variables could help in implementing DGTs within monitoring networks

    Political Mediation and American Old-Age Security Exceptionalism

    Get PDF
    Debates over America’s heavy reliance on employer-provided private pensions have understated the profound role organized labor played after World War II. Archival evidence from prominent unions and business associations suggests that the shift in organized labor’s strategy after the New Deal toward electoral activity helps explain critical interventions by Northern Democrats into the system of private pensioning in the postwar period that laid the foundation for America’s old-age security system. Such a strategy was insufficient, however, to expand Social Security. This article offers a political mediation account of electoral activity as a source of labor influence on social policy that draws on political institutionalist and class power theories
    • …
    corecore